KEYWORDS: Tin, X-rays, Scattering, Transmission electron microscopy, Semiconducting wafers, 3D modeling, X-ray detectors, 3D metrology, Silicon, Film thickness
We have evaluated two types of high aspect ratio (HAR) structures of semiconductor memory devices by adopting small-angle x-ray scattering in transmission geometry (T-SAXS). One is the thin TiN thickness on the sidewall of 1.4 μm deep holes. The results indicate that T-SAXS is capable of determining sidewall thickness profiles with sub-nanometer accuracy. The other is the precise three-dimensional shape of 4.2 μm deep holes. The results show that the shape of the hole cross-section parallel to the sample surface changes drastically in the depth direction. These evaluation results of the two structures are consistent with that of transmission electron microscope, respectively.
An etching process for high-aspect ratio (HAR) structure is one of key technologies in the recent semiconductor device fabrication. In the development and control of etching processes, it is very critical to evaluate depth, shape profile, and tilting. Critical dimension small angle X-ray scattering (CD-SAXS) is a powerful measurement technique to characterize such shape parameters of HAR structures. In this paper, we evaluated the measurement sensitivity of CD-SAXS for changing shape parameters (average CD, depth, side wall shape, tilting) of HAR holes using simulation results. The simulation results show that CD-SAXS has sufficient sensitivity to characterize shape parameters of HAR structures. We also demonstrated the performance of CD-SAXS by measurement of 1μm depth holes on the 300 mm wafer. As a result, we were able to obtain detailed hole profiles, distribution of average CD and tilt angle across the entire wafer.
High angular-resolution imagery (~1” or better) together with good off-axis scattering performance (<1/1000 of the PSF peak at 10” off-axis position) are essential ingredients for revealing energetic plasma processes ongoing in the solar corona during flares. However, imagery of the corona has never been performed with such performance due to severe technical difficulty in fabricating precision Wolter mirrors with a wide field of view exceeding several 100”.
We are attempting to realize Wolter mirrors with the above-mentioned performance for future X-ray observations of the Sun. The attempt includes fabrication of engineering mirrors of segmented type to which state-of-the-art precision polish and measurements are applied, followed by X-ray evaluation of focusing performance using BL29XUL parallel X-ray beam line at SPring-8 synchrotron facility. Results of the evaluation are then fed-back to polish/measurements for the subsequent mirrors.
Thus far we have successfully fabricated an engineering mirror whose Wolter surfaces 32.5mm x 10mm each for the parabola and hyperbola segments. The mirror focused 8 keV X-rays with the PSF core size ~0.2” HPD (~0.1” FWHM) and with ~3 x 10^(-4) scattering level at 10” off-axis position. Effort has currently been made to increase the area size of the Wolter surfaces towards application to space-borne optics for solar X-ray observations.
Status of the current development on the precision Wolter mirrors will be reported together with some future prospects.
High resolution imagery of the Sun's X-ray corona provides an essential clue in understanding dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has so far never been conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the solar corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods to sector mirrors which consist of a portion of an entire annulus, by direct polishing onto the mirror substrate. Based on the knowledge obtained through fabrication of the first (in 2013) and second (in 2014) engineering Wolter mirrors and subsequent evaluations on their X-ray focusing performance, the third engineering mirror was made in 2015−2016. The primary target of improvement over the second mirror was to suppress figure error amplitude especially for spatial frequencies around 1 mm-1 and to suppress the large astigmatism that was present in the second mirror, by introducing improved deterministic polish and smoothing on the precision mirror surfaces (32.5 mm × 10 mm in area for both parabola and hyperbola segments), as well as by careful characterization of the systematic error in the figure measurement system for the precision polish. Measurements on the focusing performance of thus-fabricated third Wolter mirror at SPring-8 synchrotron facility with 8 keV X-rays demonstrated that the mirror attained sub-arcsecond focusing performance with its HPD (half-power diameter) size reaching as small as ~0.2 arcsec for meridional focusing while ~0.1 arcsec for sagittal focusing. The meridional focusing achieved nearly diffraction limited performance (~0.12 arcsec FWHM for the PSF core). We also confirmed that the large astigmatism noted in the second mirror was correctly removed in the third mirror with the correction of the above-mentioned systematic error.
High resolution imagery of solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasmas there. However, imagery of the Sun with sub-arcsecond resolution in X-ray wavelengths has never been conducted due to severe technical difficulty in fabricating precision Wolter mirrors with a wide field of view exceeding several 100”.
For future X-ray observations of the Sun, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting state-of-the-art surface polish and measurement methods to segmented mirrors which consist of a portion of an entire circle.
Following evaluation of X-ray focusing performance of the first engineering Wolter mirror using BL29XUL coherent X-ray beam line at SPring-8 synchrotron facility, the second engineering mirror was fabricated with improvements in precision polish from the first mirror incorporated. X-ray evaluation of the second mirror at SPring-8 was conducted in February 2015, yielding FWHM size of ~0.2” for the PSF core at 8 keV while its HPD (half power diameter) size still remained at ~3” due to a large amount of small-angle scattering right outside the PSF core.
Further improvements in the precision polish for the second mirror, in particular in the spatial scale from 0.3 mm to 5 mm, is currently under way with another X-ray evaluation at SPring-8 planned in spring 2016. Progress in our development activities for precision Wolter mirrors will be reported including at-wavelength evaluation results.
A two-stage adaptive optical system using four piezoelectric deformable mirrors was constructed at SPring-8 to form
collimated X-ray beams. The deformable mirrors were finely deformed to target shapes (elliptical for the upstream mirrors
and parabolic for the downstream mirrors) based on shape data measured with the X-ray pencil beam scanning method.
Ultraprecise control of the mirror shapes enables us to obtain various collimated beams with different beam sizes of 314
μm (358 μm) and 127 μm (65 μm) in the horizontal (vertical) directions, respectively, with parallelism accuracy of ~ 1
μrad rms.
High resolution imagery of the solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has yet to be conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the Sun's corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods based on nano-technology to sector mirrors which consist of a portion of an entire annulus. Following fabrication of the first engineering mirror and subsequent evaluation on the X-ray focusing performance in 2013, the second engineering mirror was made with improvements in both precision polish and metrology introduced. Measurement of focusing performance on the second mirror at SPring-8 synchrotron facility with 8 keV X-rays has demonstrated that the FWHM size of the PSF core reached down to 0.2" while its HPD (Half Power Diameter) size remained at ~3" due to the presence of small-angle scatter just outside of the core. Also, there was notable difference in the focal length between sagittal and meridional focusing which could have been caused by an error in the sag in the meridional direction of <10 nm in the mirror area. Further improvements to overcome these issues have been planned for the next engineering mirror.
A one-dimensional two-stage focusing system using two deformable mirrors was constructed. To realize the precise
elliptical shapes, the mirror deformations were finely adjusted using the pencil-beam scan, which is a method of
wavefront measurement. X-rays of 10 keV energy were one-dimensionally focused to a full width at half maximum of
90 nm, which agrees well with the diffraction limit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.