Two-dimensional photonic crystal slabs (PCS) offer an appealing alternative to distributed Bragg reflectors or filters for various applications. Indeed, their scattering properties, governed by Fano-resonances, have been used in areas as diverse as optical wavelength and polarization filters, reflectors, semiconductor lasers, photodetectors, bio-sensors, or non-linear optical components. Suspended PCSs also find natural applications in the field of optomechanics, where the mechanical modes of a suspended slab interact via radiation pressure with the optical field of a high finesse cavity. The reflectivity and transmission properties of a defect-free suspended PCS around normal incidence can be used to couple out-of-plane mechanical modes to an optical field by integrating it in a free space cavity. We have demonstrated the successful implementation of a PCS reflector on a high-tensile stress Si3N4 nanomembrane. We could measure the photonic crystal band diagram with a spectrally, angular, and polarization resolved setup. Moreover, a cavity with a finesse as high as 12 000 was formed using the suspended membrane as end-mirror of a Fabry-Perot cavity. These achievements allow us to operate in the resolved sideband regime where the optical storage time exceeds the mechanical period of low-order mechanical drum modes. This condition is a prerequisite to achieve quantum control of the mechanical resonator with light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.