New generation exoplanet imagers on large ground-based telescopes are highly optimised for the detection of young giant exoplanets in the near-infrared, but they are intrinsically limited for their characterisation by the low spectral resolution of their integral field spectrographs (R < 100). High-dispersion spectroscopy at R ≫ 104 would be a powerful tool for the characterisation of these planets, but there is currently no high-resolution spectrograph with extreme adaptive optics and coronagraphy that would enable such characterisation. With project HiRISE we propose to use fiber coupling to combine the capabilities of two flagship instruments at the Very Large Telescope in Chile: the exoplanet imager SPHERE and the high-resolution spectrograph CRIRES+. The coupling will be implemented at the telescope in early 2023. We provide a general overview of the implementation of HiRISE, of its assembly, integration and testing (AIT) phase in Europe, and a brief assessment of its expected performance based on the final hardware.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.