Perhaps one of the most intriguing aspects of nanotechnology is the ability to create multimodal and multifunctional nanostructures that can open new venues in solving challenging biomedical problems. Here, we present multimodal magneto-plasmonic nanoparticles (MPNs) with a strong red-NIR absorbance, superparamagnetic properties and a high magnetic moment in an external magnetic field. Our design is based on self-assembly of 6 nm primary particles which consist of 5 nm diameter iron-oxide cores coated with a very thin ca. 0.5 nm gold shell. The assembly results in spherical highly uniform MPNs. We developed antibody targeted MPNs to address two highly challenging applications: (i) development of real-time assays for capture, enumeration and characterization of circulating tumor cells (CTCs), and (ii) enhancement of adoptive cell immunotherapy (ACT). Our results showed that MPNs can be used for simultaneous magnetic capture and photoacoustic (PA) detection of cancer cells in whole blood with no laborious processing steps. Furthermore, we demonstrated that MPNs conjugated with anti-CD8 antibodies, which are specific for cytotoxic T cells used in ATC, label CD8+ T cells with high specificity ex vivo and in vivo. Labeled T cells can be easily manipulated by a small magnet in suspension and under flow conditions. In addition, MPNs generate high contrast in MRI and PA imaging with the potential to detect just few cells per imaging voxel. These results show that immunotargeted MPNs can be explored for simultaneous visualization and magnetic guidance of T cell subsets in vivo for cancer treatment.
Broad two-photon cross sections of fluorescent proteins allow excitation with a single wavelength of a tunable
femtosecond pulsed laser but the brightness is sub-optimal and the cross-talk prevents sensitized emission FRET
imaging in heterologous systems. We present a novel arrangement of a resonant scanning microscope capable of fast
interline dual wavelength femtosecond excitation of pairs of fluorophores. This allows optimal and selective excitation
of mCerulean and mCitrine as well as FRET imaging using the principles of sensitized emission 3-cube imaging.
Performance of the system in thin and thick specimens is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.