Erbium-doped Y2O3 thin films were synthesized by combining radical-enhanced atomic layer deposition (RE-ALD) of Y2O3 and Er2O3 in an alternating fashion at 350°C. The Er doping level was precisely controlled to range from 6 to 14 at.% by varying the ratio of Y2O3:Er2O3 cycles during deposition. At 350°C, the films were found to be polycrystalline, showing a preferential growth direction in the [111] direction. Room-temperature photoluminescence (PL) at 1.54 μm, characteristic of the Er3+ intra 4f transition, was observed in a 500-Å Er-doped (6 at.%) Y2O3 film, showing well resolved Stark features indicating the proper incorporation of Er in the Y2O3 host. Extended X-ray absorption fine structure (EXAFS) analysis revealed a six-fold coordination of Er by O in all samples, suggesting that the PL quenching observed at high Er concentration (>8 at.%) is likely dominated by Er ion-ion interaction and not by Er immiscibility in the Y2O3 host. The effective absorption cross section for Er3+ ions incorporated in Y2O3 was determined to be ~10-18 cm2, about three orders of magnitude larger than the direct optical absorption cross section reported for Er3+ ions in a stoichiometric SiO2 host.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.