KEYWORDS: Near infrared spectroscopy, Positron emission tomography, Tissue optics, Injuries, Magnetic resonance imaging, Tissues, Oxygen, Brain, Medical research
This is the first multimodal study of cerebral tissue metabolism and perfusion post-hypoxic-ischaemic (HI) brain injury with broadband near-infrared spectroscopy (bNIRS), diffuse correlation spectroscopy (DCS), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). In 5 piglet models of HI, we measured cerebral tissue saturation (StO2), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), changes in the mitochondrial oxidation state of cytochrome-c-oxidase (oxCCO), cerebral glucose metabolism (CMRglc), and tissue biochemistry (Lac+Thr/tNAA). At baseline, the parameters measured were: 64±6 % StO2, 35±11 ml/100g/min CBF, and 2.0±0.4 μmol/100g/min CMRO2. After HI the parameters measured were: 68±6% StO2, 35±6 ml/100g/min CBF, 1.3±0.1 μmol/100g/min CMRO2, 0.4±0.2 Lac+Thr/tNAA, and 9.5±2.0 CMRglc. This study demonstrates the capacity of a multimodal set up to interrogate the pathophysiology of HIE using a combination of optical methods, MRS, and PET.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.