Thanks to the availability of high actuator density deformable mirrors (ALPAO 468 DM), the high versatility of the pyramid wavefront sensor and above all, the venue of essentially no noise EMCCD detectors, it becomes possible to fully adapt the degree of correction of an adaptive optics system for a given guide star brightness and atmospheric condition. Indeed, when the conditions are very good, the high actuator density of the DM allows to reach a high Strehl by using all the modes, and when the conditions are less favorable, the spatial sampling, i. the number of modes, and the sensitivity of the detector allows to maximize the Strehl beyond what would be possible with a classical, frozen SH-WFS based system. Beside, oversampling the detector allows to relax the specification on the pupil images given by the pyramid on the detector, which in turn relaxes the pyramid prism manufacturing specifications. We are now designing an AO system for the DAG 4 m telescope that will allow, on the same system, ExAO as well as low order improved seeing observations. This article reports on the AO performance analysis, the final optical design and the design of the double prism achromatic pyramid.
Optical waveguides were fabricated with femtosecond pulsed lasers on glass and characterized by transmission measurements. Glass waveguides were later used for excitation of the whispering gallery modes in a silicon microsphere. The coupling between the silicon microsphere and the femtosecond laser inscribed optical waveguide was simulated in both 90° elastic scattering and 0° transmission spectra. The silicon microsphere whispering gallery modes are available for both in the transverse electric and transverse magnetic polarizations with a spectral mode spacing of 0.25 nm. Optical resonances on silicon microsphere integrated with femtosecond laser written optical waveguides may lead to future quantum optical communication devices.
We observed high quality elastic light scattering from a silicon microsphere in the standard telecommunication
band. A tunable diode laser was used as the excitation source and a single mode silica optical fiber setup delivered the input laser light to the microsphere. The silicon microsphere was manipulated on the silica optical fiber half coupler (OFHC) to effectively couple the evanescent laser field to the microsphere thus exciting the whispering gallery modes (WGM’s). We observed high quality factor WGM’s which can lead to novel geometries and applications for silicon microsphere based optoelectronic devices, such as filters, modulators, and detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.