This study focused on extracting reliable and detailed information from very High Resolution (VHR) satellite images for the detection of individual trees in orchards. The images contain detailed information on spectral and geometrical properties of trees. Their scale level, however, is insufficient for spectral properties of individual trees, because adjacent tree canopies interlock. We modeled trees using a bell shaped spectral profile. Identifying the brightest peak was challenging due to sun illumination effects caused 1 by differences in positions of the sun and the satellite sensor. Crown boundary detection was solved by using the NDVI from the same image. We used Gaussian scale-space methods that search for extrema in the scale-space domain. The procedures were tested on two orchards with different tree types, tree sizes and tree observation patterns in Iran. Validation was done using reference data derived from an UltraCam digital aerial photo. Local extrema of the determinant of the Hessian corresponded well to the geographical coordinates and the size of individual trees. False detections arising from a slight asymmetry of trees were distinguished from multiple detections of the same tree with different extents. Uncertainty assessment was carried out on the presence and spatial extents of individual trees. The study demonstrated how the suggested approach can be used for image segmentation for orchards with different types of trees. We concluded that Gaussian scale-space theory can be applied to extract information from VHR satellite images for individual tree detection. This may lead to improved decision making for irrigation and crop water requirement purposes in future studies.
Forests act as sink of carbon and as a result maintains carbon cycle in atmosphere. Deforestation leads to imbalance in global carbon cycle and changes in climate. Hence estimation of forest biophysical parameter like biomass becomes a necessity. PolSAR has the ability to discriminate the share of scattering element like surface, double bounce and volume scattering in a single SAR resolution cell. Studies have shown that volume scattering is a significant parameter for forest biophysical characterization which mainly occurred from vegetation due to randomly oriented structures. This random orientation of forest structure causes shift in orientation angle of polarization ellipse which ultimately disturbs the radar signature and shows overestimation of volume scattering and underestimation of double bounce scattering after decomposition of fully PolSAR data. Hybrid polarimetry has the advantage of zero POA shift due to rotational symmetry followed by the circular transmission of electromagnetic waves. The prime objective of this study was to extract the potential of Hybrid PolSAR and fully PolSAR data for AGB estimation using Extended Water Cloud model. Validation was performed using field biomass. The study site chosen was Barkot Forest, Uttarakhand, India. To obtain the decomposition components, m-alpha and Yamaguchi decomposition modelling for Hybrid and fully PolSAR data were implied respectively. The RGB composite image for both the decomposition techniques has generated. The contribution of all scattering from each plot for m-alpha and Yamaguchi decomposition modelling were extracted. The R2 value for modelled AGB and field biomass from Hybrid PolSAR and fully PolSAR data were found 0.5127 and 0.4625 respectively. The RMSE for Hybrid and fully PolSAR between modelled AGB and field biomass were 63.156 (t ha-1) and 73.424 (t ha-1) respectively. On the basis of RMSE and R2 value, this study suggests Hybrid PolSAR decomposition modelling to retrieve scattering element for AGB estimation from forest.
Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of interferometric PolSAR data for reliable scattering retrieval.
Maximum likelihood classifier (MLC) and support vector machines (SVMs) are commonly used supervised classification methods in remote sensing applications. MLC is a parametric method, whereas SVM is a nonparametric method. In an environmental application, a hybrid scheme is designed to identify forest encroachment (FE) pockets by classifying medium-resolution remote sensing images with SVM, incorporating knowledge-base and GPS readings in the geographical information system. The classification scheme has enabled us to identify small scattered noncontiguous FE pockets supported by ground truthing. On Baratang Island, the detected FE area from the classified thematic map for the year 2003 was ∼202 ha, and for the year 2013, the encroachment was ∼206 ha. While some of the older FE pockets were vacated, new FE pockets appeared in the area. Furthermore, comparisons of different classification results in terms of Z-statistics indicate that linear SVM is superior to MLC, whereas linear and nonlinear SVM are not significantly different. Accuracy assessment shows that SVM-based classification results have higher accuracy than MLC-based results. Statistical accuracy in terms of kappa values achieved for the linear SVM-classified thematic maps for the years 2003 and 2013 is 0.98 and 1.0, respectively.
Classifying built-up areas from satellite images is a challenging task due to spatial and spectral heterogeneity of the classes. In this study, a contextual classification method based on conditional random fields (CRFs) has been used. Spatial and spectral information from blocks of pixels were employed to identify built-up areas. The CRF association potential was based on support vector machines (SVMs), whereas the CRF interaction potential included a data-dependent term using the inverse of the transformed Euclidean distance. In this way, accuracy was stable for a varying smoothness parameter, while preserving class boundaries and aggregating similar labels, and a discontinuity adaptive model was obtained and conditioned on data evidence. The classification was applied on satellite towns around the city of Nairobi, Kenya. The accuracy exceeded that of Markov random fields, SVM, and maximum likelihood classification by 1.13%, 2.22%, and 8.23%, respectively. The CRF method had the lowest fraction of false positives. The study concluded that CRFs can be used to better detect built-up areas. In this way, it provides accurate timely spatial information to urban planners and other professionals.
Coseismic displacements play a vital role in the characterization of geological faults and understanding earthquake dynamics. We demonstrate the utility of anisotropic geostatistics to interpolate their missing values. These were due to noncoherence of pre- and post-earthquake advanced synthetic aperture radar images obtained from the earthquake affected area around the city of Bam in Iran. A spherical function was used for modeling the variograms. Directional variograms revealed geometric and zonal anisotropy. The geometric anisotropy was reduced to isotropy by applying a linear transformation of the coordinates, whereas the complexity of zonal anisotropy is discussed. Results from the geometric anisotropy model indicated a continuation of the geological fault towards the north underneath the city of Bam. Cross-validation gave a mean error close to zero, whereas the root mean square error value was approximately 0.1 m, well below the detection limit of pixel-tracking technique. We conclude that ordinary kriging using a variogram model corrected for geometric anisotropy produced more accurate interpolation results than an isotropic model.
The heterogenous land-cover structure in built-up areas challenges existing classification methods. This study developed a method for detecting such areas from SAR and ASTER images using conditional random fields (CRFs). A feature selection approach and a novel data dependent term were designed and used to classify image blocks. A new approach of discriminating classes using variogram features was introduced. Mean, standard deviation and variogram slope features were used to characterize training areas including spatial dependencies of classes. The association potential was designed using support vector machines (SVMs) and the inverse of transformed Euclidean distance used as a data dependent term of the interaction potential. The latter maintained a stable accuracy when subjected to a variation of a smoothness parameter while preserving class boundaries and aggregating similar labels during classification. In this way, a discontinuity adaptive model that moderated smoothing given data evidence was obtained. The accuracy of detecting built-up areas using CRF exceeded that of Markov Random Fields (MRF), SVM and maximum likelihood classification (MLC) by 1.13%, 2.22% and 8.23% respectively. It also had the lowest fraction of false positives. Application of the method showed that built-up areas increased by 98.9 ha while 26.7 ha was converted from built-up to non-built-up areas. We conclude that the new procedure can be used to detect and monitor built-up area expansion; in this way it provides timely spatial information to urban planners and other relevant professionals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.