In this communication, we report for the first time on a homemade 55 µm core VLMA “Yb-free” Er-doped aluminosilicate double-clad fiber manufactured by the REPUSIL powder sintering technology and its implementation within two different laser configurations emitting around 1560 nm, both pumped at 976 nm. First, a free-running free-space CW oscillator delivers up to 40 W of average power with optical-to-optical efficiency of 30 % and near-diffraction-limited beam, despite the large core size. In a second experiment, the fiber is used as the main amplifier of a MOPA system delivering up to 10 nJ pulses at GHz repetition rate.
A 10 mm long PPLN crystal pumped by 125 nJ, 250 fs pulses centered at 1035 nm yielded by Yb3+ femtosecond fiber oscillator generates femtosecond signal and idler pulses tunable in the 1.35 μm - 1.65 μm and 2.6 μm - 4.2 μm spectral ranges. A numerical model accounting for both second- and third-order nonlinear processes well agree with the recorded signal conversion efficiency (up to 42%), the spectral and temporal profile of the generated pulses. Pulse to pulse stability is drastically improved injecting this compact and versatile device with a continuum generated in a photonic fiber. Further improvements are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.