Levitated particles are attractive systems for precision optomechanics due to their extreme isolation from their environment. Here we describe several experiments with microparticles in magneto-gravitational traps, which use a combination of diamagnetism and the earth's gravity. First, the center-of-mass motion of the particle can be cooled to temperatures far below the ambient temperature using feedback. Second, the change in the frequency of oscillation of the particle under the influence of field masses can be used to measure the Newtonian gravitational constant. Finally, the fjrst steps towards producing and trapping silicon carbide microcrystals, which may contain optically-addressable defect centers, are reported.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.