Silicon photonics circuit has been widely investigated in recent years, due to its advantage in the small footprint, high density integration and compatible with CMOS pilot line. In this paper, a compact, highly-sensitivity NaCl concentration sensor is experimentally demonstrated, based on the micro-ring resonators. The sensor circuit is composed of grating couplers, bus waveguide and micro-ring resonators. The width of optical waveguides is 450nm, with a thickness of 220nm. The chip was fabricated in imec through the ePIXfab multi-project wafer service supported by our group, which is compatible with the CMOS process line. The chip shows high sensitivity, as high as of more than 80nm/RIU, which corresponding to a detection limit of 1.6e-4 by using optical spectrum analyzer.
In this paper, a compact silicon photonics circuit is proposed. It consists of add-drop filter, input/output grating coupler. The resonance peak of add-drop filter can be tuned with the assist of p-i-n diode. The unknown frequency of microwave is loaded at the optical wave and coupled into the chip. The optical power ratio of through port and drop port is monotonous, which is corresponding to the unknown frequency. Meanwhile, the resonance peak of the ring can shift with the assist of p-i-n diode.
We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.
Silicon photonics can found applications in optical interconnects and optical signal processing. Recent years, silicon
photonics was developed rapidly. In this paper, we report our research work on silicon photonics. Based on the standard
CMOS foundry, we studied the silicon waveguides and related photonic components.
A silicon cross-slot waveguide filled with electro-optic polymer is proposed to release the polarization-dependent issue
of the electro-optic modulator. There are two slots in both the horizontal direction and vertical direction, so this
waveguide structure can confine both the TE and TM modes. The four silicon regions can be lightly doped as the
electrodes. There is slanted electric field in the slot region when the voltages are applied on the electrodes. The electric
field component act at principal optical axis whose electric-optic (EO) coefficient is r33 or r13 can be adjusted by
changing the voltages on the four electrodes. With optimal voltages, the effective refractive index of the TE and TM
modes can be changed equally. The Mach-Zehnder modulator based on cross-slot waveguide can achieve polarizationinsensitive.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.