Significant attention has recently been given to photoluminescence (PL) spectra and lifetime measurements on InAs/InAsSb superlattices, as high quality optical material with long carrier lifetimes are required for infrared detectors. The standard sample structure for PL measurements includes energy barriers to block photo-generated carriers from being lost through non-radiative recombination at interfaces between the superlattice and the surface or between the superlattice and the buffer/substrate. However, defect, surface, and/or interface states in AlSb, a commonly used barrier material, are known to contribute carriers to InAs quantum wells. Due to the similarity of the AlSb interface with the InAs/InAsSb superlattice, the effects of the barriers on the electrical and optical properties of the superlattice were investigated. Structures with AlSb barriers at the top and bottom of the superlattice, with no AlSb barriers, and with an AlSb barrier only at the top of the superlattice structure were studied. Hall Effect measurements revealed little change in the sheet carrier concentration at 10 K due to the barriers, but significant increases in low temperature mobility and a two-dimensional-like mobility temperature dependence were observed when barriers were present. Further high magnetic field measurements are necessary, however, to understand the transport properties of these samples due to the likelihood that multiple carriers are present. The photoluminescence (PL) spectra were almost identical regardless of the barriers, except for a 15% increase in intensity with the AlSb barrier between the buffer layer and the superlattice. The surface AlSb barrier had little effect on the intensity. The barriers are therefore recommended for PL measurements to increase the signal intensity; however, they complicate the analysis of single-field Hall Effect measurements.
We show here that n-type InAs/InGaSb superlattices can be electrically isolated from lightly doped n-type GaSb
substrates at much higher temperatures than from the more common undoped p-type GaSb substrates without the use of
a large band gap insulating buffer layer. Temperature dependent Hall effect measurements show superlattice conduction
up to near room temperature, which is significantly higher than the 20 K observed for p-type substrates. Multi-carrier
analysis of magnetic field dependent transport data demonstrate the absence of a substrate related conduction channel.
We argue that the isolation is due to the depletion layer at the p-n junction between the p-type buffer layer and the n-type
substrate.
The material properties of p-type InAs/InAsSb superlattices are of interest for infrared photodiodes, but
InAs/InAsSb superlattices are residually n-type and p-type superlattices have not been investigated thus far. This study
examines the material properties of a mid-wavelength infrared InAs/InAsSb superlattice design doped with Be
concentrations from 0.5-7x1016 cm-3. High-resolution x-ray diffraction revealed slight structural variation throughout the
~500 nm thick superlattice layer, but the RMS surface roughness was reasonable. Hall Effect measurements, taken at
10 K to remove any conduction effects from the undoped GaSb substrate, revealed the superlattice converting from ntype
to p-type at Be:3x1016 cm-3. The maximum hole mobility achieved at the two highest Be doping levels was
~24,000 cm2/Vs, which is high for mid-wavelength infrared superlattices. The doped superlattices all had
photoluminescence (PL) peaks 12 - 34 meV lower in energy than the undoped sample, and the PL peak FWHMs
increased as the average superlattice mismatch increased, as expected. Comparing the photoresponse to the PL allowed
the Be acceptor binding energy in the superlattice (13 meV) to be determined, which agreed with the reported Be
acceptor binding energy in InAs.
We report ternary growth studies to develop a largely strained InAs/InGaSb superlattice (SL) material for very long wavelength infrared (VLWIR) detection. We select a SL structure of 47.0 Å InAs/21.5 Å In0.25Ga0.75Sb that theoretically designed for the greatest possible detectivity, and tune growth conditions for the best possible material quality. Since material quality of grown SLs is largely influenced by extrinsic defects such as nonradiative recombination centers and residual background dopings in the grown layers, we investigate the effect of growth temperature (Tg) on the spectral responses and charge carrier transports using photoconductivity and temperature-dependent Hall effect measurements. Results indicate that molecular beam epitaxy (MBE) growth process we developed produces a consistent gap near 50 meV within a range of few meV, but SL spectral sensing determined by photoresponse (PR) intensity is very sensitive to the minor changes in Tg. For the SLs grown from 390 to 470 °C, a PR signal gradually increases as Tg increases from 400 to 440 °C by reaching a maximum at 440 °C. Outside this growth window, the SL quality deteriorates very rapidly. All SLs grown for this study were n-type, but the mobility varied in a variety of range between 11,300 and 21 cm2/Vs. The mobility of the SL grown at 440 °C was approximately 10,000 V/cm2 with a sheet carrier concentration of 5 × 1011 cm-2, but the mobility precipitously dropped to 21 cm2/Vs at higher temperatures. Using the knowledge we learned from this growth set, other growth parameters for the MBE ternary SL growth should be further adjusted in order to achieve high performance of InAs/InGaSb materials suitable for VLWIR detection.
We report transmission spectroscopy results from the mid- to far-infrared on graphene, grown by chemical vapor
deposition (CVD) on Cu. Similar results have been reported by several groups and their substrates of choice were
thermal Si dioxide, quartz, or SiC, where strong phonon absorption results in transmission blocking bands in midinfrared.
Silicon wafers (thickness ~ 500 μm), on the other hand, have transmission extending out to about 100 cm-1
when the doping level is low. Therefore, we choose to use Si wafers as the carrier substrates for transferred CVD
graphene. The complex refractive index of the Si substrate is measured by infrared spectroscopic ellipsometry. As a
result, continuous spectra (without blocking bands) in the range of 400 to 4000 cm-1 are obtained and they are modeled
by free carrier absorption (the Drude model) and interband transitions (considering the Pauli blocking.) From these, the
carrier density, carrier mobility, sheet resistivity, intraband scattering rate, and graphene layer number can be inferred. In
the far-infrared range, the absorption is dominated by the intraband free carrier absorption and it mainly results from the
interband transition in the mid-infrared range. Having continuous spectra using the Si substrates gives us the advantage
to model the whole spectral region (from far-infrared to mid-infrared) accurately.
A preliminary study on reduced temperature chemical vapor deposition of graphene on copper substrates was
performed. Graphene's exceptional mechanical strength, very high electrical and thermal conductivity, and
stability at atomic layer thicknesses, generates potential for a broad range of applications, from nanodevices to
transparent conductor to chemical sensor. Of the techniques demonstrated for graphene formation, chemical
vapor deposition is the sole process suitable for manufacturing large area films. While large area film deposition
of graphene has been shown on metal substrates, this process has been limited to high temperatures, 900-1000C,
which increases the cost of production and limits methods of integrating the graphene with other material
structures. In this work, CVD of graphene on copper foil was attempted over a range of temperatures (650
- 950C) on substrates as large as 5 x 15 cm in a horizontal tube reactor. Depositions were performed using
both CVD and upstream Plasma-Enhanced CVD (PECVD), and the results are compared for both techniques.
Quality of graphene films deposited with and without plasma enhancement was characterized by micro Raman
spectroscopy.
Carbon nanostructures such as carbon nanotubes (CNTs) and graphene are being applied to a wide variety of sensor
applications. Both CNTs and graphene can be grown by chemical vapor deposition (CVD) from hydrocarbons using
catalysts. Both materials require metallic catalysts. CNTs require small particles while graphene requires
continuous films. Both materials can be grown by the thermal decomposition of SiC. Under the proper conditions
either vertically aligned CNT arrays or planar graphene can be grown. Carbon source molecular beam epitaxy
(CMBE) is also under development for growth of graphene. Like SiC decomposition, CMBE is catalyst free but it is
not restricted to SiC substrates.
The performance and operating temperature of infrared (IR) detectors is largely limited by thermal generation and noise processes in the active region of the device. Particularly, excess background charge carriers enhance Auger recombination and dark currents, and depress the detector figures of merit. Therefore, reducing background carriers in the undoped region of pin diodes is an important issue for developing high-operating temperature IR detectors. In this
paper, we discuss how, through low-temperature Hall measurements, we optimized several growth and design parameters to lower residual carrier densities in various mid-IR InAs/GaSb superlattice (SL) designs. Among the growth/processing parameters investigated in the 21 Å InAs/24 Å GaSb SLs, neither growth temperature nor in-situ
post-growth annealing significantly affected the overall carrier type and density. All of the mid-IR SL samples
investigated were residually p-type. The lowest carrier density (1.8x1011 cm-2) was achieved in SLs grown at 400 °C and
the density was not reduced any further by a post-growth anneal. The growth parameter that most affected the carrier
density was interface composition control. With a minor variation in interface shutter sequence, the carrier density
dramatically increased from ~2x1011 to 5x1012 cm-2, and the corresponding mobility dropped from 6600 to 26 cm2/Vs,
indicating a degradation of interface quality. However, the carrier density was further reduced to 1x1011 cm-2 by
increasing the GaSb layer width. More importantly, a dramatic improvement on the photoluminescence intensity was
achieved with wider GaSb SLs. The disadvantage is that as GaSb layer width increases from 24 to 48 Å, the photoluminescence peak position shifts from 4.1 to 3.4 μm, for a fixed InAs width of 21 Å, indicating a photodiode based on these wider designs would fall short of fully covering the 3 to 5 μm mid-IR spectral region.
The performance of infrared focal plane arrays and quantum cascade lasers manufactured from InAs/GaSb type-
II superlattices (SLs) depends on the mobility of carriers along the growth axis. In turn, the longitudinal mobility
depends on the quality of SL interfaces. In-plane transport is a sensitive measure of interface quality and the degree of
interface roughness scattering (IRS). In this paper, we demonstrate the IRS-limited transport regime in InAs/GaSb SL
samples grown for this study. We find that the in-plane mobility
μ as a function of InAs layer width L behaves as
μ ∝ L5 , which closely follows the classic sixth power dependence expected from theory. Fits to the mobility data
indicate that, for one monolayer surface roughness, the roughness correlation length is about 35 Å.
The purpose of this work is to explore mid-infrared (IR) photodetector materials that can operate at room temperature. Shorter-period InAs/GaSb superlattices (SLs) have larger intervalance band seperations, which is beneficial for reducing Auger recombination and tunneling current, thus making room temperature operation possible. To test these possibilities, several short-period SLs ranging from 50 to 11 Å were designed for 4 μm detection threshold and molecular beam epitaxy was used to grow specially designed structures. Since morphological degradation is generally expected in shorter-period SLs, their structural qualities were monitored by transmission electron microscopy. The effect of layer properties on the optical and electrical properties was studied using low temperature photoconductivity measurements and magnetic field dependent Hall measurements. The samples with larger-periods (50 to 31 Å) showed excellent structural qualities, leading to sharper photoresponse band edge (5 meV) and lower residual background carrier concentrations (8x1010 cm-2). As the period approached 24 Å, slight layer thickness undulations within the SLs were observed and these undulations intensified as the period further reduced to 17 Å. Evidently, these structural degradations strongly influence their optical properties causing significant broadening in photoresponse band edge (9 meV). In the thinner samples with the period below 17 Å, no optical signal was detected. With slower growth rates, samples with periods as thin as 19 Å were grown without significant layer thickness variations.
Aligned carbon nanotubes (CNT’s) have been found to form on both the Si and C faces of silicon carbide (SiC) wafers at high temperature. The CNT’s form when the SiC wafer is exposed to temperatures in the range 1400-1700°C under moderate vacuum. The CNT’s are aligned roughly parallel to the surface. After a half hour at 1700°C under vacuum of 10-4torr, a near continuous CNT layer about 250nm thick is formed. The entire surface of the SiC is covered with CNT’s including both single and multiwalled tubes, and some graphitic carbon. SEM, TEM, AFM, XPS and Raman scattering measurements have been used to analyse the CNT/SiC structures. The metal catalyst free CNT’s on SiC exhibit low density of structural defects and are very straight. The carbon source is believed to be residual carbon from the SiC left on the surface after preferential evaporation of Si. It is speculated that CNT's growth is catalysed by low concentrations of residual oxygen in the chamber during growth. The vacuum conditions can significantly affect CNT's growth. Single wall carbon nanotubes are evident in Raman spectra on the samples grown at 10-3 Torr, not on these grown at 10-5Torr.
High temperature Hall effect and resistivity measurements have been made on undoped, high purity semi-insulating (HPSI) 4H SiC samples. Both physical vapor transport and high temperature chemical vapor deposition grown samples have been investigated. Resistivity measurements before and after annealing at temperatures up to 1800°C are also reported. Hall and resistivity results are compared with low temperature photoluminescence results. The thermal activation energies for HPSI material taken from temperature dependent resistivity measurements varied from 0.9 to 1.5 eV. Hall effect measurements were made on several HPSI. In all cases the material was found to be n-type and the measured carrier concentration activation energies agreed within a few tens of percent with the resistivity activation energies. Mixed conduction analysis of the data suggests that the hole concentration was negligible in all of the samples studied. This suggests that the defects responsible for the semi-insulating properties have deep levels located in the upper half of the bandgap.
Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2A/W with Johnson noise limited detectivity of 1.1 X 1011 cm X Hz1/2/W at 8 micrometers at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented.
We report on the growth and characterization of type-II IR detectors with a InAs/GaSb superlattice active layer in the 15-19 micrometers wavelength range. The material was grown by molecular beam epitaxy on semi-insulating GaAs substrates. The material was processed into photoconductive detectors using standard photolithography, dry etching, and metalization. The 50 percent cut-off wavelength of the detectors is about 15.5 micrometers with a responsivity of 90mA/W at 80K. The 90 percent-10 percent cut-off energy width of the responsivity is only 17meV which is an indication of the uniformity of the superlattices. These are the best reported values for type-II superlattices grown on GaAs substrates.
Ultraviolet photodetectors have many military and commercial applications. However, for many of these applications, the photodetectors must be solar blind. This means that the photodetectors must have a cutoff wavelength of less than about 270 nm. Semiconductor based devices would then need energy gaps of over 4.6 eV. In the AlxGa1-xN system, the aluminum mole fraction, x, required is over 40%. As the energy gap is increased, doping becomes much more difficult, especially p-type doping. This report is a study of the electrical properties of AlxGa1-xN to enable better control of the doping. Magnesium doped p-type AlxGa1- xN has been studied using high-temperature Hall effect measurements. The acceptor ionization energy has been found to increase substantially with the aluminum content. Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were also grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short- period superlattice structures instead of bulk-like AlGaN:Mg. Silicon doped n-type films have also been studied.
We report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi- insulating GaAs substrate for long wavelength IR detectors. Photoconductive detectors fabricated from the superlattices showed 80 percent cut-off at 11.6 micrometers and peak responsivity of 6.5 V/W with Johnson noise limited detectivity of 2.36 X 109 cmHz1/2/W at 10.7 micrometers at 78 K. The responsivity decreases at higher temperatures with a T-2 behavior rather than exponential decay, and at room temperature the responsivity is about 660 mV/W at 11 micrometers . Lower Auger recombination rate in this system provides comparable detectivity to the best HgCdTe detectors at 300K. Higher uniformity over large areas, simpler growth and the possibility of having read-out circuits in the same GaAs chip are the advantages of this system over HgCdTe detectors for near room temperature operation.
We report on the growth and characterization of InAs/InGaSb type-II superlattices (SLs) designed with a photoresponse cut-off wavelength of 10 micrometers . The structural parameters, layer thicknesses and compositions, were chosen to optimize the IR absorption for a superlattice with an energy band gap of 120 meV. The energy band structure and optimized absorption coefficient were determined with an 8 X 8 envelope function approximation model. The superlattices were grown by molecular beam epitaxy and comprised of 100 periods of 43.6-angstrom InAs and 17.2-angstrom In.23Ga.77Sb strain balanced to the GaSb substrates. In order to reduce the background carrier concentrations in this material, SLs grown with different substrate temperatures were compared before and after annealing. The measured photoresponse cut-off energies of 116 +/- 6 meV is in good agreement with the designed value for the SLs. The intensity of the measured mid-IR photoresponse was found to improve by an order of magnitude for the SLs grown at the lower substrate temperature and then annealed at 520 degrees C for 10 minutes. However, the x-ray diffraction spectra were very similar before and after annealing. The temperature dependent Hall measurements at low temperatures were dominated by holes with quasi 2D behavior.
We report the use of rooni-Lemperature photorefleetance measuremenLs to
deLenitine radial arid axial nonuniformity of low levels of indium in 3-inch
diameter semi-insulaLing GaAs bulk materials grown by the liquid-encapsulaLed
Cochralski method. These resulLs were compared with umc. Types
of inhomogeneities are discussed in Lerms of indium segregation and the shape of
the solid and liquid interface during crystal growth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.