We have proposed the systematic measurement of coating geometry for specialty fibers based on dark field illumination technique. The measured dark-field projection image shows clear interfaces between different refractive index materials. Using own developed image processing tool, the interfaces automatically detected and analyzed. Every degree of measurements provides circularity of each layer and then shows the center point of individual layer. Using this technique, coating diameter, coating non-circularity and coating ellipticity for double clad fiber were successfully measured and high resolution camera also detected some of existing coating defect and delamination.
We experimentally demonstrate the use of a high-speed, solid-state optical switch as an efficient Mid-IR Q-switch. The switch could be modulated upto 2.2 MHz and its rising and falling time were measured to be 160 ns and 140 ns, respectively. Using the optical switch, stable actively Q-switched pulses were readily generated from a thulium doped-fiber laser cavity. The minimum pulse width of the pulses was measured to be 160 ns at 100 kHz with the average output power of 0.5 mW.
We have proposed a germanium doped core fiber design for large mode area single-mode applications. The designed fiber effective index, dispersion and bend loss of the fundamental mode and next higher order modes have been calculated using the numerical method. The fiber exhibits a high differential loss between the fundamental mode and higher order modes. Therefore, the designed fiber structure effectively suppresses the higher order modes and retains only the first mode (or fundamental mode) in the core region. Our simulation results demonstrate that, a low loss of 0.1dB/m is achieved for fundamental mode at 1060nm wavelength with 10cm bend radius, along with it also exhibits a high loss of 4.8 dB/m to first higher order mode. The fiber shows a large mode area of 831.4 μm2 at 1060nm wavelength. The proposed paper further explores the fiber properties such as dispersion and fabrication tolerances. Our design shows a dispersion of 39 ps/km-nm at 1060nm, and also the structure shows a less dispersion variation over a wavelength band of 400nm. The fiber reduces the fabrication difficulties as compared to the other designed fibers. We fabricated the present fiber using the renowned vapor axial deposition technique. In this method, we can achieve the large diameter preforms and also the method decreases the tolerances when dealing with glasses.
We present a slot optical waveguide ring resonator that can be used as a refractive index sensor. The proposed ring resonator works on the principle of coupling of the mode from the bus waveguide to the ring waveguide. The ring resonator was analyzed using the finite-difference time-domain method. Our proposed waveguide structure showed a sensitivity of 42 nm/RIU. Our aim is to design a chalcogenide ring resonator for refractive index sensing in midinfrared wavelengths.
We numerically designed the cladding pump light stripper with optimized parameters, the design slowly scattered the power in 2.3cm length and the structure shows a constant temperature in the cladding pump stripper region. We next fabricated the light stripper using a CO2 laser system. In the experiment, we demonstrated the stripping of 60W power from the cladding region, and the structure shows 30°C of constant temperature.
We designed the large mode area photonic crystal fiber structure. We calculated the effective index, and dispersion of fundamental mode using finite difference time domain method. Numerical results show that fiber structure strips higher order modes from the photonic crystal fiber and retains only fundamental mode with 10cm bend. We have shown the results of two types of photonic crystal fibers. The fiber shows negative dispersion from 1.860 μm to 1.996 μm wavelength. We fabricated the photonic crystal fiber structure and analyzed the fabrication difficulties of the fiber design.
We experimentally demonstrate a passively mode-locked thulium doped fiber laser using a bismuth telluride deposited multimode interference (MMI) fiber at a wavelength of 1958 nm. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The center wavelength and insertion loss of MMI fiber were measured to be ~ 1958 nm and 3.4 dB. We observed a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm. The temporal pulse width of output pulses is 4.2 ps with repetition rate of 22.7 MHz.
We present a calibration protocol to get the alignment factors of a custom-made spectrometer and the nonlinear fitting
function between the measured CCD pixel domain and the wavelength domain to apply the Fourier-domain optical
coherence tomography (FD-OCT) using optical fiber gratings. We have used 5 different center wavelength gratings
covered the broadband source spectral range with a narrow spectral bandwidth (<0.05 nm) and the same reflectivity
(>92 %) to calibrate and align the custom-made spectrometer. The implemented SD-OCT system following the proposed
protocol showed the alignment factors as 44.37o incident angle, 53.11o diffraction angle, and 70.0 mm focal length. The
spectral resolution of 0.187 nm was recalculated from the alignment factors.
Experimental proof-of-concept is presented for a quasi-holographic solution to polarization-sensitive optical coherence tomography (PS OCT). Due to decoupling between the reference and sample beams by polarization, the solution seems acceptable to acquisition and communication of optical data in the nonlaboratory environment. The nonlab environment implies uncontrollable disturbances, e.g., temperature changes and mechanical effects happening under shop testing in industry or routine examinations in common clinics and hospitals. For mapping the collagen-related depolarization ratio of light backscattered from the human dermis, a phenomenological model is evolved from the theory of light depolarization in crystalline polymers. The model yielded a simplified intensity-based estimation algorithm. The design concept and the model rely on a submillimeter tumor thickness as a proofed prognostic factor and an important criterion for complementary functional diagnostics of skin cancers in their early phase. Choice of the model is inspired by similarity of structural and optical properties between liquid-crystal collagen fibers in the dermis and birefringent crystalline lamellae in some polymer materials. The model gives a plausible interpretation of a peculiarity of cumulative birefringence in the abnormal skin dermis. Following a top-down approach to design, the authors attempt to contribute to bridging the gap between practitioners' concerns and academic studies.
We demonstrate a novel implementation of spectral domain OCT by using a proposed sweeping detector at 1320 nm
wavelength range. A fiber pigtailed Fabry-Perot tunable filter is newly adapted to receive spectral interferometer
information using a photo-receiver instead of using charged couple detector arrays. In order to show a possibility of the
scheme in other view point, we have changed the position of the Fabry-Perot tunable filter of the interferometer. The
combination of a super luminescent LED and a semiconductor optical amplifier was used as an optical source. Its output
power is about 10 mW and the spectral bandwidth is about 60 nm. The filtered light after passing thorough the Fabry-
Perot tunable filter has 0.15 nm instantaneous spectral linewidth with 1.3 mW average output power. The system with an
axial resolution of 12 μm performed OCT imaging of a cornea of a rat eye proving potential about the application of the
proposed sweeping detector OCT.
There have been several technologies to enable high resolution cross-sectional images of biological tissues in optical coherence tomography (OCT) method. Optical frequency comb (OFC) source has been proposed to overcome the crosstalk problem among the CCD detector pixels of the continuous spectrum of light source. Recently, a passive-type OFC is demonstrated simply placing a Fabry-Perot interferometer filter right after the broadband light source, but it shows a high loss of output light power and limited tenability of channel spacing of multi-wavelength. In this work, we experimentally demonstrate a spectral comparison of a novel multi-wavelength source based on a fiber Sagnac interferometer. The channel spacing is flexibly tuned by the effective length control of polarization-maintaining fiber (PMF). The uniform and stable multi-wavelength spectral distribution is also helpful to obtain the higher sensitivity from the lower exposure intensity source to get a better quality spectral OCT image.
We propose the novel fiber devices with laser machining technique. one dimensional fiber end-surface grating was
fabricated by inscribing micro-structure on the cleaved surface of a thermally expanded core fiber with femtosecond
laser pulses. Diffraction beam patterns of the zeroth and the high order due to end-surface grating were observed. For the
monitoring of signals in coarse wavelength division multiplexing wavelength, the measured diffraction beam patterns
according to the wavelength of input light were investigated. Also, a structurally induced compact helicoidal long-period
fiber grating (HLPFG) was fabricated by twisting a single mode fiber with CO2 laser beam and its characteristics were
experimentally investigated. The eccentricity between the core and the cladding of a fiber is introduced from the screw-type
deformation. This helically induced significant periodic index change along the fiber produces a deep mode
coupling between the core and the cladding of -20 dB with a short grating length of ~1 cm. The novel peak shift of a
HLPFG was analyzed with co-directional or contra-directional torsion to the helix.
A further insight into the prior concept of polarization sensitive optical coherence tomography system intended for non-laboratory
conditions is brought forward and an experimental proof-of-concept is presented. A phenomenological model
is adopted from the theory of light depolarization in crystalline polymers and modified to yield a simplified algorithm for
mapping depolarization ratio in dermis. The algorithm could distinguish between dermal layers with depleted collagen
content and normal dermis of normal perilesional skin. Dermis is simulated by bireringent lamellae of collagen arranged
chaotically in multiple layers parallel to the skin surface. Both the design concept and the model imply the sub-millimeter
tumor thickness as a proofed prognostic factor and an important criterion for complementary functional
diagnostics of skin cancers at their early phase of vertical growth. Choice of the model is inspired by similarity of
structural and optical properties between liquid-crystal collagen fibers in dermis and birefringent crystalline lamellae in
polymer materials. The numerical computation based on the model allowing for real characteristics of dermis gives
plausible interpreting of depolarization peculiarities caused by collagen depletion. Feasibility is discussed of exploiting
fiber optic analogs of achromatic retarders. Fabrication of the fiber retarders is shown to be realistic by making use of the
photonics technology possessed by the authors.
KEYWORDS: Optical communications, Polymer optical fibers, Polymers, Phase only filters, Single mode fibers, Eye, Local area networks, Silica, Transmitters, Receivers
A new type of novel all-fiber power splitter has been designed and experimentally demonstrated, which could be directly applied to very short reach (VSR) passive optical networks (PON) based on hard polymer clad fibers (HPCF). Overcoming silica glass manufacturing difficulties, we successfully developed a 4x4 HPCF star coupler using a micro hydrogen-burner flame brushing. The device showed an excellent uniformity in power splitting ratio along with a very low excess loss of 4.58dB and insertion loss of 10.5dB over a wide wavelength range 600-900nm. Transmission quality and power budget for PON using the devices were analyzed for 1.25 and 2.5Gbps at 10, 25, 50m, whose results confirmed highly practical potential of the proposed device in VSR PON systems with a reasonable power budget.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.