Contrast enhancements, such as histogram equalization or gamma correction, are widely used by malicious attackers to conceal the cut-and-paste trails in doctored images. Therefore, detecting the traces left by contrast enhancements can be an effective way of exposing cut-and-paste image forgery. In this work, two improved forensic methods of detecting contrast enhancement in digital images are put forward. More specifically, the first method uses a quadratic weighting function rather than a simple cut-off frequency to measure the histogram distortion introduced by contrast enhancements, meanwhile the averaged high-frequency energy measure of his- togram is replaced by the ratio taken up by the high-frequency components in the histogram spectrum. While the second improvement is achieved by applying a linear-threshold strategy to get around the sensitivity of threshold selection. Compared with their original counterparts, these two methods both achieve better performance in terms of ROC curves and real-world cut-and-paste image forgeries. The effectiveness and improvement of the two proposed algorithms are experimentally validated on natural color images captured by commercial camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.