KEYWORDS: Acoustics, Single mode fibers, Signal to noise ratio, Sensors, Optical sensing, Optical amplifiers, Machine learning, Data modeling, Continuous wave operation, Signal detection
Red palm weevil (RPW) is a harmful pest that has wiped out many palm plantations worldwide. Early detection of RPW is difficult, especially on large plantations. Here, we report on combining fiber–optic distributed acoustic sensing (DAS) and machine learning to detect weevil larvae less than three weeks old, in a controlled environment. In particular, we use the temporal and spectral data provided by a fiber–optic DAS system to train a convolutional neural network (CNN), which distinguishes “healthy” and “infested” signals with a classification accuracy higher than 97%. Additionally, a rigorous machine learning classification approach is introduced to improve the false alarm performance metric by >20%.
Optical-time-domain-reflectometer (OTDR) suffers from the existence of dead-zones along a deployed fiber under test (FUT). Within a dead-zone, OTDR typically fails to provide any reliable diagnostic information. We here use a fewmode fiber (FMF) to completely cancel the OTDR dead-zone produced by the front facet reflection of the FUT. In particular, we launch the optical pulses in the form of the LP01 mode into the FMF, and meanwhile we record the Rayleigh signal from the higher-order modes. The developed system successfully monitors the amplitude and frequency of a vibration event produced by a piezoelectric transducer (PZT) located within the dead-zone.
Optical fiber distributed acoustic sensor (DAS) and distributed temperature sensor (DTS) are considerably desirable for many important applications including oil and gas industry. Simultaneous measurements of vibration and temperature will exclude the need for two separate DAS and DTS systems, reduce overall cost, and ensure continuous real-time monitoring of these two important sensing parameters. We here devise a hybrid DAS-DTS system using a few-mode fiber (FMF). Although the system requirements for DAS and DTS are quite different, FMF is considered an ideal compromise to satisfy the requirements of the two systems.
There exists a demand for radiation-safe and high-speed communication systems available to public users in the fifthgeneration (5G) communication and beyond. In this regard, visible light communication (VLC) stands out offering multiGigabit-per-second (Gbit/s) data transmission, energy efficiency and illumination, while being free from electromagnetic interference. Here, we report a high-speed VLC link by using a 443-nm GaN-based superluminescent diode (SLD) and bit-loading discrete-multiple-tone (DMT) modulation. Analysis of the device characteristics and modulation parameters shows a feasible bit allocation of up to 256-QAM while obtaining up to 3.8 Gbit/s data rate. These results, together with the electro-optical properties of the SLD such as being droop-free, speckle-free and high-power, make it an attractive solution for the future of public communications and smart lighting, while complementing traditional fiber-based and millimeter-wave technology.
We experimentally report a proof-of-concept demonstration of a few-mode fiber (FMF) based distributed acoustic sensor (DAS) design, aiming at upgrading the capabilities of the typical DAS that employs the standard single mode fiber (SMF). We only excite the fundamental mode at the input port of the FMF, and further, we minimize the impact of intermodal coupling within it such that the FMF operates in a quasi-single mode (QSM) state. The QSM operated FMF keeps the basic operation principle of the DAS valid and, in comparison with the standard SMF, it allows injection of higher pump peak-power before reaching the threshold power of nonlinearity. We validate our design by sensing vibration events produced by a piezoelectric transducer (PZT) cylinder. The FMF based DAS successfully figures out the locations and frequencies of these events. This reported design would enable the realization of a DAS design with longer sensing range and higher spatial resolution, in comparison to the standard SMF based DAS.
KEYWORDS: Signal to noise ratio, Acoustics, Sensors, Signal processing, Single mode fibers, Optical fibers, Interference (communication), Fiber optics sensors, Transducers
We experimentally report a normalized differential signal processing technique to improve the signal-to-noise ratio (SNR) of a fiber optic distributed acoustic sensor (DAS), in the time-domain. The introduced method is calibrated through comparing it with the typical differential method when using a noisy DAS system that includes a relatively wide linewidth laser. For this system, the normalized differential method allows measuring the vibration locations, produced by a piezoelectric transducer (PZT) cylinder, with enhanced SNR.
Stimulated Brillouin scattering (SBS) based distributed optical fiber sensors have been deployed in a myriad of potential applications. Recently, the characteristics of SBS in few-mode-fibers (FMFs) have been investigated for designing optical sensors of high selectivity. For example, monitoring SBS of the individual modes in a two-mode fiber (TMF) allows simultaneous sensing of temperature and strain. In optical communications, on contrary, SBS degrades the signal-to-noise ratio (SNR) and limits the channel capacity. We here experimentally measure the threshold power required to stimulate Brillouin scattering in an FMF when using different mode-pair combinations as pump and probe signals. In particular, we use mode-division-multiplexing (MDM) to launch different linearly-polarized (LP) modes into the both ends of a TMF. For each mode-pair, we gradually raise the pump power until observing the transition from spontaneous to stimulated Brillouin scattering. The results presented here are considerably important for designing efficient FMF-based optical communications/sensing system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.