We review the recent biomedical detection developments of scanning near-field optical microscopy (SNOM), focusing on scattering-type SNOM, atomic force microscope-based infrared spectroscopy, peak force infrared microscopy, and photo-induced force microscopy, which have the advantages of label-free, noninvasive, and specific spectral recognition. Considering the high water content of biological samples and the strong absorption of water by infrared waves, we divide the relevant research on these techniques into two categories: one based on a nonliquid environment and the other based on a liquid environment. In the nonliquid environment, the chemical composition and structural information of biomedical samples can be obtained with nanometer resolution. In the liquid environment, these techniques can be used to monitor the dynamic chemical reaction process and track the process of chemical composition and structural change of single molecules, which is conducive to exploring the development mechanism of physiological processes. We elaborate their experimental challenges, technical means, and actual cases for three microbiomedical samples (including biomacromolecules, cells, and tissues). We also discuss the prospects and challenges for their development. Our work lays a foundation for the rational design and efficient use of near-field optical microscopy to explore the characteristics of microscopic biology.
The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.
We fabricated micro-spikes on the surface of silicon by using femtosecond laser pulses. By changing the
fabrication condition, i.e., the power of laser, the number of laser pulses, the wavelength of laser, and the proportional
relation between laser power and pulse number under the same laser fluence, we found many interesting phenomena,
which proved there was a special relation between laser parameters and the surface morphology. All these results are
important for the optimal fabrication of surface-microstructured photovoltaic material with high absorptance and good
photoelectric properties, for the practical applications of solar cell, et al.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.