In this work, an optical system with large diameter off-axis parabolic lenses was adopted to achieve diffraction gratings by laser interference exposure. The diffraction wavefront aberration caused by temperature variations was simulated using ZEMAX. Through theoretical analysis and optical simulation, it is proved that the diffraction wavefront aberration of holographic grating caused by the pinhole’s location errors (it is assumed that when the displacement of pinhole exists along one axis, the locations of the pinhole along the other two orthogonal axes are in a state of precise adjustment ) is much larger when the displacement occurs along z axis than along the other two axes, and the diffraction wavefront aberration is the smallest when the displacement occurs along x axis. If the ambient temperature changes by 1 degree, the PV value is 0.0631λ when the location of the pinhole changes by 0.121mm along z axis, 0.0034λor 0.0672λ when the location of the pinhole changes by 0.002mm along x axis or 0.03mm along y axis. To reach the diffraction limit (that means the PV value is 0.25λ), the decentering value of the pinhole along z axis should be less than 0.0341mm. In conclusion, the position error along z axis is an important factor to influence the PV value of diffraction grating, and the effect of temperature on the PV value of diffraction grating can be neglected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.