Fourier Ptychographic Microscopy (FPM) is a computational imaging technique which reconstructs super-resolved amplitude and phase images by combining variably illuminated low-resolution images through an iterative phase retrieval algorithm. However, the phase-retrieval-based reconstruction requires sufficient overlap between spatial frequency bands of the measurements, which creates a trade-off between the number of measurements and the reconstruction quality. We propose a deep-learning-based FPM reconstruction that recovers both amplitude and phase images in high resolution with far fewer measurements than conventional FPM, with model-based constraint. Our model works with almost no overlap between low-resolution measurements in the Fourier domain, only taking into account the total Fourier extent of the measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.