This paper presents an ensemble lymph node detection method combining two automated lymph node detection methods from CT volumes. Detecting enlarged abdominal lymph nodes from CT volumes is an important task for the pre-operative diagnosis and planning done for cancer surgery. Although several research works have been conducted toward achieving automated abdominal lymph node detection methods, such methods still do not have enough accuracy for detecting lymph nodes of 5 mm or larger. This paper proposes an ensemble lymph node detection method that integrates two different lymph node detection schemes: (1) the local intensity structure analysis approach and (2) the appearance learning approach. This ensemble approach is introduced with the aim of achieving high sensitivity and specificity. Each component detection method is independently designed to detect candidate regions of enlarged abdominal lymph nodes whose diameters are over 5 mm. We applied the proposed ensemble method to 22 cases using abdominal CT volumes. Experimental results showed that we can detect about 90.4% (47/52) of the abdominal lymph nodes with about 15.2 false-positives/case for lymph nodes of 5mm or more in diameter.
This paper presents a novel renal artery segmentation method combining graph-cut and template-based tracking methods and its application to estimation of renal vascular dominant region. For the purpose of giving a computer assisted diagnose for kidney surgery planning, it is important to obtain the correct topological structures of renal artery for estimation of renal vascular dominant regions. Renal artery has a low contrast, and its precise extraction is a difficult task. Previous method utilizing vesselness measure based on Hessian analysis, still cannot extract the tiny blood vessels in low-contrast area. Although model-based methods including superellipsoid model or cylindrical intensity model are low-contrast sensitive to the tiny blood vessels, problems including over-segmentation and poor bifurcations detection still remain. In this paper, we propose a novel blood vessel segmentation method combining a new Hessian-based graph-cut and template modeling tracking method. Firstly, graph-cut algorithm is utilized to obtain the rough segmentation result. Then template model tracking method is utilized to improve the accuracy of tiny blood vessel segmentation result. Rough segmentation utilizing graph-cut solves the bifurcations detection problem effectively. Precise segmentation utilizing template model tracking focuses on the segmentation of tiny blood vessels. By combining these two approaches, our proposed method segmented 70% of the renal artery of 1mm in diameter or larger. In addition, we demonstrate such precise segmentation can contribute to divide renal regions into a set of blood vessel dominant regions utilizing Voronoi diagram method.
This paper presents an investigation of optimal feature value set in false positive reduction process for the automated method of enlarged abdominal lymph node detection. We have developed the automated abdominal lymph node detection method to aid for surgical planning. Because it is important to understand the location and the structure of an enlarged lymph node in order to make a suitable surgical plan. However, our previous method was not able to obtain the suitable feature value set. This method was able to detect 71.6% of the lymph nodes with 12.5 FPs per case. In this paper, we investigate the optimal feature value set in the false positive reduction process to improve the method for automated abdominal lymph node detection. By applying our improved method by using the optimal feature value set to 28 cases of abdominal 3D CT images, we detected about 74.7% of the abdominal lymph nodes with 11.8 FPs/case.
This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.