Intraoperative assessment of breast surgical margins will be of value for reducing the rate of re-excision surgeries for lumpectomy patients. While frozen-section histology is used for intraoperative guidance of certain cancers, it provides limited sampling of the margin surface (typically <1 % of the margin) and is inferior to gold-standard histology, especially for fatty tissues that do not freeze well, such as breast specimens. Microscopy with ultraviolet surface excitation (MUSE) is a nondestructive superficial optical-sectioning technique that has the potential to enable rapid, high-resolution examination of excised margin surfaces. Here, a MUSE system is developed with fully automated sample translation to image fresh tissue surfaces over large areas and at multiple levels of defocus, at a rate of ∼5 min / cm2. Surface extraction is used to improve the comprehensiveness of surface imaging, and 3-D deconvolution is used to improve resolution and contrast. In addition, an improved fluorescent analog of conventional H&E staining is developed to label fresh tissues within ∼5 min for MUSE imaging. We compare the image quality of our MUSE system with both frozen-section and conventional H&E histology, demonstrating the feasibility to provide microscopic visualization of breast margin surfaces at speeds that are relevant for intraoperative use.
Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are increasingly being engineered for a variety of disease-detection and treatment applications. For example, we have previously developed a fiber-optic Raman-encoded molecular imaging (REMI) system for spectral imaging of biomarker-targeted SERS NPs topically applied on tissue surfaces to identify residual tumors at surgical margins. Although accurate tumor detection was achieved, the commercial SERS NPs used in our previous studies lacked the signal strength to enable high-speed imaging with high pixel counts (large fields of view and/or high spatial resolution), which limits their use for certain time-constrained clinical applications. As a solution, we explored the use of surface-enhanced resonant Raman scattering (SERRS) NPs to enhance imaging speeds. The SERRS NPs were synthesized de novo, and then conjugated to HER2 antibodies to achieve high binding affinity, as validated by flow cytometry. Under identical tissue-staining and imaging conditions, the targeted SERRS NPs enabled reliable identification of HER2-overexpressed tumor xenografts with 50-fold-enhanced imaging speed compared with our standard targeted SERS NPs. This enables our REMI system to image tissue surfaces at a rate of 150 cm2 per minute at a spatial resolution of 0.5 mm.
Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.
Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.
One of the major challenges in the complete resection of cancer is the difficulty of distinctly classifying tumor and healthy tissue. This paper investigates the capability of competing kinetic modeling approaches for identifying different tissue types based on differential cell-surface receptor expressions. These approaches require fresh resected tissues to be stained with a mixture of two probes: one targeted to a cancer specific cell-surface receptor, and another left “untargeted” to account for nonspecific retention of the targeted agent, with subsequent repeated rinsing and imaging of the probe concentrations. Analysis of the results were carried out in simulations and in animal experiments for the cancer target, epidermal growth factor receptor (EGFR), a cell surface receptor overexpressed by many cancers. In the animal experiments, subcutaneous xenografts of human glioma (U251; moderate EGFR) and human epidermoid (A431; high EGFR) tumors, grown in six athymic mice, were excised and stained with an EGFR targeted surface-enhanced Raman scattering nanoparticle (SERS NP) and untargeted SERS NP pair. The salient finding in this study was that significant non-specific retention was observed for the EGFR targeted probe [anti-EGFR antibody labeled with a surface-enhanced Raman scattering (SERS) nanoparticle], but could be corrected for by the equivalent non-specific retention of the untargeted probe (isotype control antibody labeled with a different SERS nanoparticle). Once this non-specific binding was accounted for, the kinetic model was able to predict the expected differences in EGFR concentration among different tissue types: healthy, U251, and A431 in accordance with an ex vivo flow cytometry analysis, successfully classifying different tissue types.
We are developing a miniature fiber-optic spectral-detection device and topical-staining protocol
to rapidly detect multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) targeted to
cell-surface biomarkers in fresh tissues. Ex vivo and in vivo experiments were performed to optimize our
strategy for the rapid detection of multiple cell-surface biomarkers following a brief (5 min) topical
application of SERS NPs on tissues. The simultaneous detection and ratiometric quantification of targeted
and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to
nonspecific variations in NP concentrations, potentially enabling point-of-care surgical guidance or early
disease detection.
We have developed a line-scanned dual-axis confocal (LS-DAC) microscope with
subcellular resolution suitable for real time diagnostic imaging at shallow depths. This design
serves as a benchtop prototype for a handheld version of the LS-DAC intended for rapid point-of-care
pathology. We have assessed the performance trade-offs between the LS-DAC and a point-scanned
dual-axis confocal (PS-DAC) microscope via diffraction-theory analysis, Monte-Carlo
simulations, and characterization experiments with phantoms and fresh tissues. In addition, we are
exploring the use of a sCMOS detector array and rapid 3D deconvolution to improve the
sensitivity and resolution of our LS-DAC microscope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.