Breast magnetic resonance imaging (MRI) plays an important role in high-risk breast cancer screening, clinical problemsolving, and imaging-based outcome prediction. Breast tumor segmentation in MRI is an essential step for quantitative radiomics analysis, where automated and accurate tumor segmentation is needed but very challenging. Automated breast tumor segmentation methods have been proposed and can achieve promising results. However, these methods still need a pre-defined a region of interest (ROI) before performing segmentation, which makes them hard to run fully automatically. In this paper, we investigated automated localization and segmentation method for breast tumor in breast Dynamic Contrast-Enhanced MRI (DCE-MRI) scans. The proposed method takes advantage of kinetic prior and deep learning for automatic tumor localization and segmentation. We implemented our method and evaluated its performance on a dataset consisting of 74 breast MR images. We quantitatively evaluated the proposed method by comparing the segmentation with the manual annotation from an expert radiologist. Experimental results showed that the automated breast tumor segmentation method exhibits promising performance with an average Dice Coefficient of 0.89±0.06.
KEYWORDS: Digital breast tomosynthesis, 3D modeling, Tumor growth modeling, Breast cancer, Data modeling, 3D image processing, Artificial intelligence, Radiology, Tumors, Performance modeling
Digital mammography (DM) was the most common image guided diagnostic tool in breast cancer detection up till recent years. However, digital breast tomosynthesis (DBT) imaging, which presents more accurate results than DM, is going to replace DM in clinical practice. As in many medical image processing applications, Artificial Intelligence (AI) has been shown promising in reducing radiologists reading time with enhanced cancer diagnostic accuracy. In this paper, we implemented a 3D network using deep learning algorithms to detect breast cancer malignancy using DBT craniocaudal (CC) view images. We created a multi-sub-volume approach, in which the most representative slice (MRS) for malignancy scans is manually selected/defined by expert radiologists. We specifically compared the effects on different selections of the MRS by two radiologists and the resulting model performance variations. The results indicate that our scheme is relatively robust for all three experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.