A computer-generated hologram (CGH) is generated by simulating light waves propagated from virtual objects, and we are able to observe natural 3-D images without feeling tired. However, the resolution of current output devices, liquid crystal displays, is not high enough to display CGH data, so the size of reconstructed images are restricted. To increase image size, a method by using the Fourier transform optical system has been proposed. The Fourier transform optical system converges reconstructed light by arranging a lens between an observer and hologram and reconstructs floating images near the observer. In the system, a reconstruction position is confined around a focal point of the lens because a CGH calculation method had not yet been developed . To solve this problem, this describes a CGH calculation method using a unified formula to reconstruct images at arbitrary depth. This formula is derived by considering image formation of a lens and hologram. Moreover, process for eliminating unnecessary light elimination processing is described in this paper. By changing the elimination process according to the reconstruction position, images are reconstructed without overlapping unnecessary light at arbitrary depth. To confirm the effectiveness of the proposed method, we conducted optical reconstruction experiments. The results show that correctly sized images are reconstructed at correct depth, and unnecessary light is eliminated. It is possible to observe large and free-depth 3-D images with the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.