Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode’s temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode’s current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode’s current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.
The nuclear magnetic resonance gyroscope serves as a new generation of strong support for the development of high-tech weapons, it solves the core problem that limits the development of the long-playing seamless navigation and positioning. In the NMR gyroscope, the output signal with atomic precession frequency is detected by the probe light, the final crucial photoelectric signal of the probe light directly decides the quality of the gyro signal. But the output signal has high sensitivity, resolution and measurement accuracy for the photoelectric detection system. In order to detect the measured signal better, this paper proposed a weak photoelectric signal rapid acquisition system, which has high SNR and the frequency of responded signal is up to 100 KHz to let the weak output signal with high frequency of the NMR gyroscope can be detected better.
The spin-exchange relaxation-free (SERF) magnetometer as an ultra-precision magnetometer has been researched during recent times. The sensitivity of the signal measurement limits the accuracy of the magnetometer. The optical modulation method is used to detect the tiny optical rotation angle of the linear polarized (LP) light, and the modulator is improving from Faraday magneto-optic modulator to photoelastic modulator (PEM). However, the current commercial PEMs have several defects in the adoption of the magnetometer. First, considerable heat will reduce the PEM’s modulation precision; In addition, the big appearance will hamper the assembly of the magnetometer; Moreover, the products are unreliable in the small amplitude modulation. In order to overcome these drawbacks, a sort of PEM is designed by theoretical calculation and finite element simulation in the paper. The target PEM with 50kHz intrinsic frequency and 795nm transmission is composed of one hexahedron piezoelectric transducer (PZT) glued with one optical glass each other. About the PZT, the alpha quartz is determined by considering the vibration and temperature properties of the material, then a proper cut angel and size is calculated to satisfy the design target. Subsequently, the fused silica is used for its well optical property. In the final, a simulation is conducted to verify the feasibility and validity of the design.
KEYWORDS: Laser stabilization, Field programmable gate arrays, Semiconductor lasers, LabVIEW, Signal processing, Signal detection, Ferroelectric materials, Analog electronics, Absorption, Cesium
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument’s FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
In order to comppress the fluctuation of frequency and improve the frequency stability of laser, we demonstrate a
wavelength-modulation-locking laser source which has a continuous tuning range around the central wavelength of 852
nm. The system consists of a grating-feedback external cavity diode laser part, an error signal obtaining part and a
proportional-integral feedback control part. Two channels are conducted to lock the laser at the hyperfine transition peaks
and around the peaks respectively. And the two channels can be switched expediently. When locking at the peaks, the
third derivation of the spectrum signal is carried out as an error signal to control the feedback loop. And when locking at
the frequency points around the peaks, the output spectrum line is used as the feedback control signal directly. The
locking range of the laser frequency is expanded and the fluctuation of the laser is comppressed within the range of 1.15
MHz.
KEYWORDS: Chemical species, Interferometers, Bragg cells, Control systems, Control systems design, Modulation, Switches, Attenuators, Laser stabilization, Magnetism
The importance of atom interferometers that have high sensitivity and super precision is well recognized in
the fields of rotation sensing, inertial and gravitational forces sensing, relativity tests, and other precision measures. So many researchers are absorbed in atom interferometers. An atom interferometer consists of many parts, among of which optical part plays a significant role because of the need of laser beams in every parts. Based on this situation and some specific quantitive requirements to laser beams, this article presents a laser frequency and power control system for atom interferometer which can realize the functions of frequency shift and scan, power stabilization and modulation, and highspeed switch. The system lies on acousto-optical modulators (AOM) and a phase-locked loop frequency synthesizer is designed in the system as a very important part which has wide capture range of frequency and well stability. The experimental results show that the designed system is available and the performances of laser through AOM are as good as expected and the phase noise of the output is restrained. In addition, the system also could be used in other instruments and devices, such as atomic clock, gravimeter, gradiometer, and gyroscope.
A novel method to generate cylindrical vector beams is presented based on a cat-eye cavity laser and a Mach-Zehnder interferometric arrangement. Some transverse modes can be generated by the cat- eye cavity laser and then superimposed by the Mach-Zehnder interferometric arrangement to form different kinds of cylindrical vector beams. First, simulations of four kinds of cylindrical vector beams based on four kinds of combinations of transverse modes are made and other situations are also discussed when the two beams are in-phase, 180° out-of-phase and with other phase difference. Then, an experimental set-up based on a cat-eye cavity laser and a Mach-Zehnder interferometric arrangement is built, and four forms of cylindrical vector beams generated by the experiment system. The experimental results agree well with the simulative results.
A semiclassical approach is used to calculate the principle for heterodyne detection utilizing two optical detectors. These calculations show that excess-noise in the local-oscillator can be canceled and the balanced-detector optical heterodyne detection requires less local oscillator power compared with the traditional single-detector optical heterodyne detection. An experimental demonstration of excess-noise cancellation is reported.
Birefringent dual-frequency laser based on frequency splitting technology has been employed to obtain the frequency
difference from approximate 40 MHz to several hundreds MHz. In this paper, the mechanism of frequency splitting in
birefringent dual-frequency laser with intracavity quartz crystal is analyzed. Beside the birefringence effect, the optical
activity of quartz crystal and the self-reproduction of laser are considered. The formulae of the polarization angles and
the frequency difference of the two lasing eigen-modes are deduced in detail, and the continuities of their curves are
discussed. Based on these formulae, the theoretical curves of polarization angle and frequency difference are calculated,
which are consistent well with their experimental curves.
For the general existing experimental systems of laser teaching, it is hard to generate lots of transverse modes and to
show the process of mode competition. In the paper a novel synthetical instructional system based on a cat's eye cavity
He-Ne laser is proposed. Lots of transverse modes from fundamental to high-order modes can be generated by adjusting
the cat's eye. A quartz crystal or a stress plate in intra-cavity can split one-frequency laser into dual-frequency laser.
Based on the frequency splitting, the dynamic process of mode competition is observed. Almost all the important
concepts in lasers are demonstrated experimentally. The instructional system provides a powerful aid for laser teaching.
On the other hand the real frequency splitting and the polarization direction of the laser output versus the rotation angle
of crystal are measured and discussed, and their values at very large rotation angle are forecasted.
In conventional optical tweezers system a high numerical aperture (NA) objective is employed both to image and to generate a gradient force toward the focus on sample particles, so the system is complex and expensive especially for the multi-optical-tweezers system. We built a novel simple optical trapping system based on a lensed optical fiber probe. This new method offers several other advantages over the conventional optical tweezers. The trapping system we built includes a laser coupling unit, a multi-dimensional probe manipulating unit, a sample nano-positioning unit, and a microscopy imaging unit. Based on the system, a yeast cell is trapped and manipulated on the chamber bottom by the lensed fiber probe, and the optical trapping forces acting on the yeast cell as a function of the offset are measured and discussed in different directions by the static method and the dynamic one respectively with various powers. The results by the two measurement methods coincide with each other, and the detail experimental procedure and the data processing of the two methods are introduced in this paper.
KEYWORDS: Near field optics, Optical fibers, Particles, Finite-difference time-domain method, 3D modeling, Near field, Optical spheres, Optical tweezers, Metals, Coating
The technique ofoptical fiber trapping has been successfully used to manipulate small particles, while near field optical tweezers based on the sub-wavelength size fiber tip has been proposed to trap nanometric particles. With some similar physical mechanism and properties they are investigated and analyzed respectively in this paper. Firstly the optical field distributions of uncoated fiber probe with different radii of tip, from several microns down to zero, are calculated and analyzed by 3D finite-difference time-domain (FDTD) method. Then the metal-coated fiber probe is also discussed in the same way. In conclusion, the light from the fiber probe with the radius larger than wavelength is converged at a cometic spot, whatever with or without metal coating. When the radius of metal-coated tip is smaller than halfofwavelength, the evanescent field occurs and decays rapidly. The local field enhancement dominates in the metal-coated probe ifthe radius is smaller.
Dynamic geometric parameter measurement plays an important role in most industries. Research and development on this technology have attracted great attention. We proposed a laser tracking system for measuring development of laser tracking technology, a laser tracking system consisting of three tracking and measuring stations is described in detail. The three stations track respectively three retro reflectors on the moving target, and measure the position and attitude. We built the mathematical model of measurement and developed the algorithm for processing data. According to the homogeneous coordinate transformation, we deduced the formulae for computing coordinates and attitude under different coordinate systems. Some key techniques of the measuring system are discussed at the end of the paper.
The spatial position of industrial object, such as robot end- effector, is an important geometric parameter whose accuracy determines whether robot can perform accurately. Therefore, we have established a laser tracking and coordinate measuring system with galvanometer scanner for high accuracy, large range, non- contact, and spatial dynamic measurement. In this paper, the laser tracking system and its setup are illuminated at first. Then, the formulae for calculating coordinates are deduced, and the calibration method of the initial distance from tracking mirror to target is presented. After that, two preliminary experiments in different distances are described. One is on CMM; the other is with grating ruler as reference. In the former, the maximum measurement error of coordinates is 70micrometers and the maximum error of length is 35micrometers in the 85x100x100mm3 measurement volume, and in the 1m initial distance. In the later, the maximum error of length is 140micrometers in the range of 480mm, and in the 5m initial distance. At the end of the paper, the error sources are analyzed and simulated.
In an adaptive optical system, the effectiveness of wavefront correction is influenced by relative configuration (matching) of the subapertures of the wavefront sensor and actuators of the wavefront corrector. In this paper, the computer simulations for the systems using Hartmann-Shack wavefront sensor, deformable mirror with continuous face plate, and discrete actuators are reported. In the simulation we use the algorithm of direct wavefront slope control. For different configurations of wavefront sensor and wavefront corrector, the wavefront reconstruction matrixes are established based on the measured influence function of deformable mirrors developed in the Institute of Optics and Electronics. The process of wavefront sensing, reconstruction, and correction for different Zernike terms and a series of wavefront induced by Kolmogorov turbulence are simulated. The criteria for evaluating the configurations are residual error of correction and stability of reconstruction matrix (condition number). The results of this investigation show that the configurations in which each subaperture is controlled mainly by three actuators have smaller residual error and better stability. The arrangements of square subaperture with 4 actuators at the corners are unstable and result in a checkerboard pattern of residual wavefront.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.