In the past few years, the development of natural language processing has been able to deal with many issues such as emotional analysis, semantic analysis, and so on. This review first introduces the development of natural language processing, and then summarizes their applications in financial technology, which mainly focuses on public opinion analysis, financial prediction and analysis, risk assessment, intelligent question answering, and automatic document generation. The analysis shows that natural language processing can give full play to its advantages in the financial field. Moreover, this paper also discusses the problems and challenges for financial technology that are developed based on natural language processing. Finally, this paper presents two developing trends of natural language processing in financial technology: deep learning and knowledge graph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.