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ABSTRACT  

The monochromatic single frame pixel count of a camera is limited by diffraction to the space-bandwidth product, 
roughly the aperture area divided by the square of the wavelength. We have recently shown that it is possible to 
approach this limit using multiscale lenses for cameras with space bandwidth product between 1 and 100 gigapixels. 
When color, polarization, coherence and time are included in the image data cube, camera information capacity may 
exceed 1 petapixel/second. This talk reviews progress in the construction of DARPA AWARE gigapixel cameras and 
describes compressive measurement strategies that may be used in combination with multiscale systems to push camera 
capacity to near physical limits.  
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1. INTRODUCTION  
Over their brief history [1], digital cameras have reduced the cost, in both time and money, of image capture, storage and 
communication by many orders of magnitude. Despite this progress, however, camera capacity remains far below 
fundamental limits. Imagers have often been designed to match the limits of human acuity at 300 milliradian 
instantaneous field of view (ifov), 3 color channels and 30-60 frames per second. While this represents an apparently 
formidable 1 gigapixel/second of image data, cameras that greatly exceed human acuity are both desirable and feasible.  

Growth in image data rate is determined by technical, economic and political constraints. Technical constraints include 
optical resolution, focal plane pixel technology and electronic read-out, communication, processing and storage 
technologies. Economic constraints include both the cost of constructing and operating camera systems and the market 
demand and economic value of images. Politics plays a role in the definition and implementation of imaging and 
broadcast standards. As illustrated in Fig. 1, electronic image pixel count has been relatively static since the first 
introduction of electronic imaging for broadcast television in 1940. Indeed, the first consumer digital cameras, 
introduced in the 1980’s, were “still video cameras” operating with pixel count matched to the original NTSC standard 
[1]. Modern “HD video” exceeds the pixel count of the original standard by a factor of 5. This increase in image quality 
over ¾ century pales in comparison to the 10 order of magnitude increase in single channel communication bandwidth 
over the century and half from Morse code to wavelength multiplexed optical fiber and the similar increase in computing 
capacity in half of century of Moore’s law. Since its launch at video resolution, the pixel capacity of digital still imaging 
has thus far grown along an exponential path characteristic of modern information technologies.  

Primary factors limiting video pixel count have been, first, the assumption that image data should be limited by the 6-20 
MHz channel capacity of radio broadcasts and, second, the assumption that little advantage would accrue from 
broadcasting at rates much in excess of the single channel human information capacity. These assumptions have limited 
growth in both audio and video broadcast and communications standards. For example, the G.722 telephony standard 
merely doubles ancient 3.5 kHz bandlimits and, as noted above, HD video covers a mere 2-3x improvement in resolution 
relative to standard definition. While political and technical barriers make more substantial improvements challenging, it 
is important to note that substantially different economic and market forces bear on video and audio. Audio data 
processing, while technically feasible and of occasional market interest, is much less common than video processing. 
Market interest in spatial and temporal zoom is much higher for image data as people study scenes to find otherwise 
unnoticed events and features.  
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Figure 1. Measures of single channel communications capacity, computing power, broadcast image quality and still image quality 
relative to first commercial demonstrations vs. year. Communications is normalized to human transmission of Morse code, broadcast 
to the original NTSC standard and digital stills to the first “still video” cameras.  
 
Assuming that technical challenges could be overcome, one may easily imagine digitally zoomable broadcast systems in 
which viewers could digitally zoom magnification in space and time over several orders of magnitude. Where current 
broadcast systems allow only a narrow field porthole view, future systems may offer substantially more than human 
acuity, making telepresence more than a match for actually being there. One may imagine systems that autonomously 
search for features of interest and display multiple details on wide field scenes.  

A transition from serial image read-out to parallel optical and electronic processing is essential to achieving this vision. 
Building on the multiscale approach described previously [2, 3], this paper considers the physical limits of camera 
capacity and discusses continuing efforts to use multiscale design to allow camera capacity to leverage exponential 
improvements in processing and communications.  
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2. INFORMATION CAPACITY AND MULTISCALE DESIGN 
The information capacity of a camera, i.e. the maximum number of nominally independent pixels it can resolve per unit 
time, is limited by optics, electronics and the physics of the scene being imaged. The space bandwidth product, which 
determines the number of independent degrees of freedom one may capture per spectral band per unit time, is the most 
basic measure of information capacity. This number is proportional to the aperture area in units of square wavelengths 
[4]. To achieve this limit, however, one must construct a lens that eliminates geometric aberration in analog image 
formation. This challenge is historically challenging due to the restriction of digital cameras to planar focal surfaces and  
linear scaling in geometric aberration as a function of lens scale. However, in our recent work we have shown that the 
combination of monocentric spherical optical designs and local field correction in multiscale systems enables diffraction 
limited image formation over a wide range of lens apertures [5, 6]. In practice, aperture size is limited by fabrication 
challenges rather than lens design.  

Until very recently, electronic pixel pitch and focal plane array size were as significant as optics in limiting camera 
capacity. With the recent commercialization of micron-scale pixels and the ability to mosaic small focal planes in arrays 
of arbitrary effective size using multiscale lenses, electronic pixel count is no longer a significant barrier. Therefore, with 
the optical and electronic barriers nearly overcome, one may reasonably wonder what is the fundamental limit of pixel 
count? 

Since optics and electronics have been dominant for so long, we often forget the role that the scene plays. A camera is 
ultimately a transceiver for information emitted or reflected by an object and then transmitted through air. It is important 
to understand that the information encoded on the optical field on emission or reflection is finite and that this 
information is further degraded by the transmission medium. Turbulence in the air reduces the spatial coherence of 
wavefronts emanating from a common point, ultimately limiting the maximum coherent aperture size and achievable 
spatial resolution. Similarly, the limited photon flux of the object field limits temporal and spectral resolution.  

We assume that the optical quality of the atmosphere, measured by the Fried parameter, limits spatial resolution to about 
5 microrad. This is the limit imposed by the effects of atmospheric turbulence at most locations, and in practice for 
terrestrial viewing the resolution may be significantly above this [7, 8]. For temporal resolution we may consider an 
object illuminated by ambient Solar illumination of 1 kW/m2 at a range of 100 meters. We resolve a 1 mm patch, 
corresponding to 1 milliwatt/patch. With a 10 cm aperture, we detect ~.5 nW/patch or 1010 photons/sec. Assuming 1000 
photons per pixel, this allows about 10 million pixels split between temporal and spectral degrees of freedom. Assuming 
10000 fps, 100 spectral channels and 10 focal range bins, this suggests 100 petapixels per second as a reasonable 
physical limit. 

While this limit exceeds current camera capacity by 6-7 orders of magnitude, one must view this deficiency as an 
opportunity to move television, in its original meaning of as an electronic telescope allowing high-resolution observation 
of remote events, on to a more promising track than that shown in Fig. 1. With optics and pixel sampling eliminated as 
barriers, the primary remaining hurdle is that the power and communications bandwidth necessary for petapixel 
transmission is unsustainable. It is important to note, however, that the actual object information contained in the raw 
petapixel photon flux is always much less than the pixel limit in natural fields. Noting recent progress in using 
compressive sampling to reduce bandwidth and pixel sampling rates [9-12] in addition to coding spectral [13] and focal 
[14] degrees of freedom, one may reasonably expect physical layer compression to reduce the camera data load by 4-5 
orders of magnitude. In combination with parallel read-out enabled by multiscale design, this suggests that full petapixel 
data cube sensitivity may eventually be achievable. As a first step in this direction, we consider the current status of 
gigapixel resolution multiscale cameras.  

3. IMAGES 
We consider images captured by the AWARE 2 120 degree field of view 40 microradian ifov and the AWARE 10 100 
degree field of view 25 microrad ifov cameras described in [2]. These cameras consist of three element monocentric 
spherical objective lenses surrounded by arrays of 100-300 14 megapixel microcameras. Each microcamera has 
independent focus, exposure and frame rate control. Camera data is read-out through a hierarchy of control circuitry, 
allowing flexible provisioning of readout bandwidth.  
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A composite from a single microcamera of the AWARE 10 system moved into 10 different locations in the array is 
shown in Fig. 2.  Zoomed in regions of this color composite are shown in Fig. 3.  The distances to these targets varies 
from 54 meters to 162 meters.  The low f/# optics give a shallow depth of field, requiring precise focusing.   

Figure 2: Color compositing is a straightforward extension of the architecture developed for the grayscale camera. Here, compositing 
is performed on the red, green, and blue color channels independently and fused afterword. Data in this image comes from a single 
microcamera in the AWARE 10 system placed at several different field locations behind the objective. 

Figure 3: Zoomed in regions of Fig. 2 showing the detail of the AWARE 10 camera system.  Distance to object from camera, Left to 
right: 54m, 162m, 123m, 117m, 162m.   

The multiscale philosophy of the camera extends into the image processing architecture. Because modern displays 
typically have <~2 megapixels, image formation can be limited to only the data required to fill these displays. Video-rate 
image display becomes accessible by framing image formation as a highly parallelizable task, via the MapReduce 
framework [15]. Such a task is amenable to processing on current GPUs, which can have a large number (>1000) of 
processors on a single card. The image formation architecture treats imaging as describable via a parametric model that 
maps input pixels (from individual focal planes) to output pixels (for display), making the mapping process 
parallelizable on an input-pixel basis. The intensity of each pixel is predicted via a parametric model of the vignetting, 
taking into account the exposure time of the focal plane to which that pixel belongs. Image formation therefore happens 
in a 32-bit high dynamic range (HDR), wherein the 8-bit range from every microcamera is placed according to its 
exposure. Overlapping input pixels (intra- and inter-camera) are combined with knowledge of this intensity and exposure 
variation, making the reduction process parallelizable on an output-pixel basis. The final step converts the 32-bit 
luminosity data into an 8-bit (suitable for display on most devices) representation of the scene. Several methods are 
available, but a spatially-varying tone mapping method produces results most representative of those seen by the human 
eye. The resulting image contains information about both extremely bright (sunlit) and dim (shadowed) regions of the 
scene (see Fig. 4) [16]. 
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Figure 4. A high dynamic range image of the chapel on Duke University campus. 98 microcamera images are composited into a one 
gigapixel 32-bit image, which here has been downsampled and converted to 8-bits for display. 

Importantly, this architecture allows us to consider a gigapixel camera as a fundamentally multi-user tool. As the 
electronics are architected to allow requests from multiple sources, many independent processing workstations can form 
a live stream of images for a group of independent users. These users may be looking at portions of the full field of view 
that are disjoint, overlap, or are at dramatically different scales (see Fig. 5). 

 

 
Figure 5. Multiple users can interact with the camera array simultaneously. Each user can have a window of any scale or position 
without interfering with other users. (Image courtesy of Tom Nelson [17]). 

 

This framework was designed with a limited number of users and processing capacity in mind. It can, however, be 
extended to processing the full resolution image, which becomes acutely necessary as the number of users is increased. 
For example, at a public event with 10,000 users able to interact with the camera via mobile devices, processing 
individual fields of view would require an order of magnitude more processing than is strictly necessary for the amount 
of input data in AWARE-2. More generally, consider that a given user receives Puser output pixels for their display (~2 
MP for most modern displays). The processing resources required for a number of users, Nusers, can easily exceed the 
total number of pixels in the system, Ptotal. Therefore when Nusers * Puser > Ptotal , the camera is better served by providing 
enough resources to form the full resolution image at the desired framerate. The parallelized image formation 
architecture allows for this by dividing the full field of view into many smaller regions, each of which can be processed 
independently. The host of smaller composites can be served to users individually, in groups, and at different scales as 
required. 
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The extension of this framework from grayscale to color is straightforward, as the mapping and reduce steps can be done 
independently on the red, green, and blue color channels. Alternatively, processing efficiency can be improved by 
transmitting and processing color image data in the YCbCr or raw color spaces. Regardless of the color space, the 
described image formation architecture can be applied to the task. Initial composites, done with a single microcamera, 
confirm the efficacy of the architecture for color processing, as shown in Figure 2. 

As discussed above, the electronics maintain a time-sequential buffer of recent images at a constant system framerate, 
allowing a user to step backward and composite images from a previous frame. However, image acquisition could be 
structured to fill the buffer with heterogeneous data, as shown schematically in Figure 6. This data could include varied 
frame rates, exposures, focal positions, resolutions, or spectral bands. The buffer history then becomes an N-dimensional 
data cube that greatly expands the type of information about the scene that be explored with the camera. Moreover, this 
data store can be viewed as being undersampled, allowing computational sensing approaches to generate various types of 
imagery. The desired imagery would guide the design and capabilities of the microcameras in an array (e.g. imaging rate 
or spectral sensitivity). Imaging with such cameras is then a combination of what data to measure and what algorithms to 
apply to synthesize a desired result. 

 
Figure 6: Currently, the frame buffers on the electronics are filled with time-sequential data at a constant framerate (top). 
Alternatively, the buffers could be filled with heterogeneous data (variable framerate, focal position, exposure, resolution, etc) to build 
a more complex data cube that can be mined to synthesize additional imagery (bottom). 

4. DISCUSSION 
The AWARE series of multiscale cameras, constructed under the DARPA AWARE Wide Field of View Program, 
demonstrate that optics and electronic sampling provide no barrier to camera information capacity. Rather, capacity is 
ultimately limited by photon flux and atmospheric turbulence. In the near term, however, capacity is limited by 
communications and processing. In exploring real-time gigapixel image capture and streaming, we begin a process, 
common in the history of information technologies, of moving over successive generations toward fundamental limits, 
even as we explore and question what those limits may be.  
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