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ABSTRACT 

Fabry-Perot (F-P) interferometers are commonly studied in undergraduate textbooks. Their spectral 
transmittance profiles are usually analyzed assuming that a plane wave is incident on the interferometer. 
This wave undergoes multiple reflections on the interferometer surfaces, and the interference of all these 
waves leads to the typical resonance structure of the spectral transmittance profile described by the Airy 
formula. However Fabry-Perot interferometers are commonly used in conjunction with laser beams, for 
example when they are used as intracavity-wavelength and longitudinal mode-selecting etalons. Although 
it is evident that the finite size of the beam will produce a deterioration of the filtering characteristics of 
the F-P interferometer, this effect is not usually analyzed in undergraduate textbooks. The aim of this 
work is to show students how the finite size of the incident beam influences the spatial and spectral 
response of the F-P interferometer. In particular it will be shown that the spectral response of the F-P 
interferometer can significantly differ from that predicted by the Airy formula. The theoretical approach 
is based on a plane-wave angular spectrum representation of the incident, transmitted, and reflected 
beams. The incident beam is assumed to be gaussian and the cases of normal and oblique incidence are 
discussed. 
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1. INTRODUCTION 

Beam Optics is a subject rarely discussed in undergraduate Optics textbooks [1-4]. The treatment of 
optical wave propagation is usually restricted to plane waves. Nevertheless they are unrealistic because 
they extend spatially over all of space, with constant amplitude, and carry infinite total energy. Real 
waves have the form of bounded beams, spatially localized, and with finite energy content. Since the 
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advent of the laser the study of optical beams has experienced a strong development [5-7]. Optical beams 
also play an essential role in the rapidly growing research area of nano-optics [8]. 

In undergraduate Optics textbooks the analysis of the performance of many optical devices is usually 
carried out assuming that the incident wave is a plane wave. One typical example is the Fabry-Perot (FP) 
interferometer [1-4]. The spectral dependence of the transmittance of this device is usually deduced by 
adding the multiple waves generated by the reflections undergone by the incident plane wave on the 
surfaces of the etalon. The interference of all these waves gives rise to the characteristic spectral 
dependence of transmittance described by the Airy function. Nevertheless, FP interferometers are 
commonly used as intracavity wavelength selectors in laser cavities so that they interact not with plane 

waves but with laser beams. If the FP etalon is tilted an angle θ1 relative to the laser beam axis, the finite 
spatial extent of the laser beam prevents the full spatial overlap of the multiple waves generated by 
reflection on the surfaces of the etalon. This will produce a deterioration of the filtering characteristics of 
the F-P interferometer and the spectral dependence of the transmittance will be different from that 
predicted using plane waves. 

The aim of our paper is to familiarize the student with the physics of beam optics: how optical beams are 
described, and how different the performance of optical devices can be when real optical beams, instead 
of plane waves, are used. For that purpose we have chosen the simplest type of beam provided by a laser 
source: the Gaussian beam [5-7], and an optical device well known by the students: the FP interferometer.  

In order to simplify the analysis as much as possible we have used the simplest realization of a FP etalon: 
a dielectric slab of thickness h and refractive index n2 immersed in a medium of refractive index n1. In the 
calculations carried out in the paper we have assumed the following values for the relevant parameters of 

the system: λHe-Ne=632.8nm, h=4mm, n1=1, and n2=2.6 (the refractive index of ZnSe for λHe-Ne). 

 

2. PLANE WAVES 

The transmittance and reflectance of a plane wave incident on the etalon at an angle θ1 to the normal can 
be analyzed by adding the amplitudes of the infinite number of partial waves produced by multiple 
reflections at the two surfaces [1-4, 9]: 

 

 

 

 

 

Figure 1. Reflection and transmission of a plane wave incident on the FP etalon 

This derivation was first carried out by G. B. Airy in 1833 and the expressions obtained are usually 
known as the Airy’s formulas [9]: 
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In these expressions δ is the phase delay between two partial waves due to one additional round trip, λo is 
the wavelength in vacuum and R the reflectance of the etalon surfaces. According to the Fresnel formulae: 
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where: 

 ( )1 1 1 cosn n θ=   (6) 

 ( )2 2 2 cosn n θ=  (7) 

for TE polarization, and: 

 ( )1 1 1 secn n θ=   (8) 

 ( )2 2 2 secn n θ=  (9) 

for TM polarization. 

According to equation (2), the maximum value of the etalon transmittance will be 1Max
FPT = , and the 

minimum value ( ) ( )1
1
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=
+

. In the system we are studying the index contrast is n2/n1=2.6 and 

the reflectance of the etalon surfaces at normal incidence is small: R(θ1 =0º)=0.2. In consequence, 

( )1 0º 0.45Min
FPT θ = =  and the filtering performance of the FP etalon at normal incidence is quite limited. 

However, in the case of TE polarization, when the angle of incidence increases the reflectance of the 
etalon surfaces also increases and the performance of the FP etalon improves (see Fig. 2.a). Finally, at 
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angles of incidence high enough (θ1≥85º) the minimum value of the transmittance becomes practically 

zero ( ( )1 0.02Min
FPT θ ≤ ).  
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Figure 2. Maximum and minimum transmittance of the FP etalon as a function of the angle of incidence (in 
degrees) for plane waves with: a) TE polarization; b) TM polarization 

 

The case of TM polarization is quite different: when θ1 is increased from normal incidence the reflectance 

of the etalon surfaces decreases and becomes zero at Brewster’s angle (θB=69º). The incident wave is 

totally transmitted by the FP etalon at this angle ( ( ) ( ) 1Min Max
FP B FP BT Tθ θ= = ) independently of the value of 

the wavelength. Therefore a good filtering performance of the FP etalon for TM polarization can only be 
achieved at very high angles of incidence (see Fig. 2.b).  

The transmission of the FP etalon is maximum ( 1Max
FPT = ) when 
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2
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= = ,        m=any integer.        (10) 

By using λo=c/ν, where c is the velocity of light in vacuum and ν is the optical frequency, condition (10) 
can be written as 
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Thus, for a fixed θ1, the frequencies of unity transmission are equally spaced. The separation between two 
consecutive resonance frequencies is called “free spectral range”: 
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The spectral dependence of the etalon transmittance for several angles of incidence is shown in Fig. 3.a 

(TE polarization) and Fig. 3.b (TM polarization). As the free spectral range depends on θ1, the 

frequencies have been normalized by ∆ν in order to make them comparable.  
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Figure 3. Spectral dependence of the etalon transmittance for several angles of incidence (θ1=0º: blue; 

θ1=20º: green; θ1=40º: red; θ1=69º: brown; θ1=85º: black). The incident waves are plane waves with: a) TE 
polarization; b) TM polarization 

In the case of TE polarization it can be observed that when θ1 increases not only the contrast between the 
maximum and minimum transmittance increases but also the peaks become sharper.  

 

The use of the FP etalon as a spectrum analyzer requires that the width of the transmission peaks be small 
and the free spectral range be wide. Thus, the resolution of the FP etalon is usually characterized by the 
“ finesse” defined as the ratio of the free spectral range to the full width of the transmission peaks at their 
half-maximum values (FWHM): 

 Finesse ≡ 
FWHM

ν∆
.            (13) 

The dependence of the finesse of the FP etalon on the angle of incidence for TE and TM polarization is 

shown in Fig. 4. In the case of TM polarization (Fig. 4.b) the finesse is not defined for 24º≤ θ1 ≤81º,  

because in that range ( ) ( )1
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Figure 4. Finesse of the FP etalon as a function of the angle of incidence (in degrees) for plane waves with: a) 
TE polarization; b) TM polarization 

 

 

3. GAUSSIAN BEAMS 

3.1 Main Features 

Gaussian beams are the simplest type of beam provided by a laser source [3-7, 10]. The spatial structure 
of the fundamental mode TEM00 propagating along the Z axis is given by: 
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According to eq. (14) at any transverse plane z=constant the beam intensity decreases by a factor 1/e2 at 

the radial distance ( )2 2x y w z+ = . As most of the power carried by the beam (86%) is within a circle 
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of radius ( )w z in the transverse plane, ( )w z  is usually regarded as the beam radius (or beam width). The 

beam radius is minimum (wo) at the plane z=0 (beam waist) and increases monotonically with z (see eq. 
(15)). The minimum value of the beam radius wo is thus known as the “waist radius”, and 2wo is usually 

called the “spot size”.  At a distance Rz  from the waist (Rayleigh range) the cross-sectional area of the 

beam doubles (see eq. (15)). Therefore the distance 2 Rz  can be considered as an estimation of the beam 

waist dimension along the Z axis and is called “depth of focus”. At large distances from the waist (

Rz z>> ) the beam diverges as a cone of full-angular width: 

     
2 

 wo

λ
π

Θ = .            (18) 

The smaller the waist radius wo, the smaller the depth of focus and the faster the beam diverges. 

According to eqs. (14)-(18), once fixed the values of Eo and λ, the shape of the Gaussian beam is 
governed only by the waist radius wo.  

3.2 Transmission of a Gaussian beam through a Fabry-Perot etalon 

In order to analyze the transmission of a Gaussian beam through the FP etalon considered in section 2 we 
have decomposed the Gaussian beam into plane waves that propagate in all three dimensions (angular 
spectrum representation) [8]. For each incident plane wave we have calculated the reflected and 
transmitted plane waves using the standard procedure outlined in section 2 but generalized to include 

three-dimensional wavevectors. Finally the total field on a plane Πt (Πr) at a distance zt (zr) from the 
etalon (see Fig. 5) has been calculated by adding all transmitted (reflected) complex plane waves with 
their appropriate phases.  

 

 

 

 

 

 

 

Figure 5. Reflection and transmission of a Gaussian beam incident on the FP etalon 

The transmittance of the FP etalon has been calculated as the ratio of the transmitted energy flux 

(obtained by spatial integration on the Πt plane of the intensity of the transmitted beam) to the incident 
energy flux. The same procedure has been followed to obtain the reflectance of the FP etalon. The 
number of points in k-space has been conveniently chosen in order to get good convergence.  

According to section 3.1, if the wavelength λ and the peak amplitude of the field Eo are known, the only 
parameters required to completely characterize the incident Gaussian beam are the direction of the beam 
axis, the location of the waist, and the waist radius wo. In our simulations the direction of the beam axis is 
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specified by the angle of incidence θ1. The waist is assumed to be located at zi=10 cm. from the etalon 
and we have analyzed the transmission of the FP etalon for three different values of the waist radius: 

wo=0.25 mm., 0.5 mm., and 1 mm. The planes Πt and Πr are assumed to be at a distance zt = zr =10 cm. 
from the etalon. The values of TFP and RFP have been calculated for a large number of wavelengths close 

to λHe-Ne=632.8 nm in order to obtain the spectral response of the FP etalon.  

 

The results obtained in the calculations show that the maximum transmittance is achieved for the same 
wavelengths and angles of incidence as in the plane-wave case (see Fig. 6), so that eqs. (11)-(12) are still 
valid for Gaussian beams.  
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Figure 6. Transmittance of the FP etalon as a function of the angle of incidence (in degrees) for plane waves 
(blue line) and Gaussian beams (wo=0.25 mm., red line) with TE polarization and wavelength λ=632.815 nm. 

 

However the maximum and minimum values of the etalon transmittance significantly differ from those 
obtained with plane waves (see Fig. 7). When the angle of incidence increases from normal the filtering 
performance of the FP etalon worsens. The smaller the waist radius wo of the incident Gaussian beam, the 
faster the deterioration of the filtering efficiency. Thus, if the waist radius wo is small enough, for a 

certain angle of incidence the FP etalon stops filtering. Surprisingly, for high values of θ1 the filtering 
ability of the FP etalon is recovered.  
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Figure 7. Maximum and minimum transmittance of the FP etalon as a function of the angle of incidence (in 
degrees) for plane waves (black) and Gaussian beams of different waist radius (color) with: a) TE 
polarization; b) TM polarization 

The spectral response of the etalon for several angles of incidence is represented in Fig. 8. A comparison 
with the results obtained with plane waves (Fig. 3) shows the strong degradation of the filtering efficiency 
of the etalon when is illuminated by a Gaussian beam, especially for TE polarization (compare Fig 3.a 
with Fig. 8.a).  
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Figure 8. Spectral dependence of the etalon transmittance for several angles of incidence (θ1=0º: 

blue; θ1=10º: grey; θ1=20º: green; θ1=40º: red; θ1=75º: brown; θ1=85º: black). The incident wave is a 
Gaussian beam of waist radius wo=0.5 mm. with: a) TE polarization; b) TM polarization. 

 

The dependence of the finesse of the FP etalon (calculated according to eq. (13)) on the angle of 
incidence for TE and TM polarization is shown in Fig. 9.  
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Figure 9. Finesse of the FP etalon as a function of the angle of incidence (in degrees) for plane waves (black 
lines) and Gaussian beams of different waist radius (wo=1 mm. (blue points); wo=0.5 mm. (red points)) with: 
a) TE polarization; b) TM polarization 

 

It can be observed that for high angles of incidence the finesse is greater for TE polarization than for TM 
polarization. Therefore, on the basis of the results obtained for plane waves, it is expected that the 
filtering performance of the FP etalon be better for TE polarization than for TM. However this is not so 
clear because, for example, the contrast between the maximum and minimum transmittance (
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( ) ( )1 1
Max Min

FP FPT Tθ θ− ) is greater for TM polarization (see Figs. 7, 8). Therefore, when the maximum 

transmittance is less than 1 (as usually happens when the FP etalon is illuminated by a Gaussian beam), 
the value of the finesse is not enough to characterize the filtering performance of the etalon.  

 

 

4. DISCUSSION 

The filtering of the FP etalon is the result of the interference of the multiple waves generated by reflection 
at the two surfaces of the etalon. That requires the overlapping of the waves. In the case of an incident 
plane wave its infinite spatial extent assures the complete overlapping of the multiple waves for any angle 
of incidence, giving rise to the typical resonance structure of the spectral transmittance profile described 
by the Airy’s formula.  

However, in the case of an incident Gaussian beam, the finite transverse spatial extent of the beam 
prevents the complete overlapping of the waves except at normal incidence.   

Let us considered, for example, a small portion of a perfectly collimated beam of finite transverse extent 
“A” incident on the etalon (red line in Fig. 10). The fraction that emerges from the etalon after 2 
reflections is shifted a distance: 
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Figure 10. Transmission of a Gaussian beam incident on the FP etalon at low angle of incidence 

As the angle of incidence θ1 increases from normal, ∆x increases, the overlapping of the partial waves 
decreases and the filtering efficiency of the FP etalon worsens. This result explains the performance of the 

FP etalon at low angles of incidence obtained in section 3 (see Fig. 7). Nevertheless ∆x is a strictly 

increasing function of θ1, so it cannot explain why the filtering ability of the FP etalon is recovered at 
high angles of incidence. 
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The reason is that the relevant magnitude to characterize the overlapping of the waves is not ∆x but ∆s, 
the relative displacement between two consecutive waves in the direction of the transmitted beam (see 
Fig. 11): 
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Figure 11. Transmission of a Gaussian beam incident on the FP etalon at high angle of incidence 

 

When θ1 is increased the distance within the etalon between two consecutive waves (∆x) increases. 

However, that distance decreases (by a factor cosθ1) when the waves leave the etalon (see Fig. 11). 

The dependence of ∆s on the angle of incidence for the FP etalon used in our study (n1=1, n2=2.6; 
h=4mm.) is shown in Fig. 12.  
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Figure 12. Displacement ∆s (in mm.) as a function of the angle of incidence (in degrees) for the FP etalon 
used in our study 

It can be observed that ∆s is maximum for θ1@45º. Thus it is expected that the greatest overlap of the 
waves, and therefore the best filtering efficiency of the FP etalon, occurs at both low and high angles of 

h 
θ2 

n2 

n1 

n1 

∆x 

θ1 

Α 

∆s 
θ1 

Proc. of SPIE Vol. 10452  104524E-12



incidence. When the relative displacement between two consecutive waves (∆s) is greater than the spot 
size (2wo) of the incident Gaussian beam: 

     ( )1  2 os wθ∆ ≥ ,            (21) 

the partial beams generated by reflection at the surfaces of the etalon do not overlap and the FP etalon 

stops filtering. Eq. (21) and Fig. 12 can be used to deduce the interval of values of θ1 for which the etalon 
will not filter. For example, for the values of wo used in section 3: 

wo=1 mm.:      Filtering is achieved for all θ1, 

wo=0.5 mm.:      21º§θ1§72º, 

wo=0.25 mm.:      10º§θ1§81º, 

in good agreement with the intervals obtained in the simulations (see Fig. 7). 

In these intervals the transmittance of the FP etalon does not depend on the waist radius of the Gaussian 
beam (see Fig. 13). The partial beams generated by reflection at the surfaces of the etalon do not overlap 
and the transmittance of the etalon can be calculated by adding the intensities of the multiple beams 
transmitted: 
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2 2

2 2 4
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T T R R
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,          (22) 

where T and R are the transmittance and the reflectance of the etalon surfaces, respectively. The 
simulation of the curve TFP obtained using eqs. (22) and (5) confirms this result (green line in Fig. 13). 
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Figure 13. Maximum and minimum transmittance of the FP etalon as a function of the angle of incidence (in 
degrees) for plane waves (black) and Gaussian beams of different waist radius (wo=1mm.: blue; wo=0.5mm.: 
red; wo=0.25mm.: brown) with: a) TE polarization; b) TM polarization. The green line represents the 
transmittance obtained by adding the intensities of the multiple beams transmitted (no interference among the 
beams) (eq. (22)). 
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5. CONCLUSIONS 

The analysis of the transmittance of a FP etalon when is illuminated by a Gaussian beam is a good way of 
introducing the physics of optical beams to students. On the one hand, the performance of the FP etalon 
when is illuminated by plane waves is quite well known by students. On the other hand students can 
realize how essential properties of optical beams, as their finite tranverse spatial extent, can strongly 
modify the performance of optical devices, that can be quite different from that predicted using plane 
waves. 
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