## International Conference on Space Optics-ICSO 1997

Toulouse, France
2-4 December 1997
Edited by George Otrio


Absolute distance measurements by laser interferometry
Rachel Thibout, Patrick Juncar, Laurence Pujol, Jacques Lizet, et al.

# Rachel THIBOL'T**. Patrick JUNCAR*. Laurence PIJOL . Dominique BOLTEAID Jacques LIZET . Jacques BERTHON\#. Georeses OTRIO* 






#### Abstract

 allow sahsolute distance measurement up to 3 m wath an ancertann of $0,1 \mathrm{um} / \mathrm{lt}$ wes the pronciple of sinthetce wavelength and can be used under vanum or on an graseous medum. with the hetp of a mer wope of source. called an aur-watengeth sandard the (NES thentre Aatomal d'thdes Spanales) is morested in an aboolute measurement hoth in spaci (vacuam) and on the ground. wn ar. w characterize optucal instrumems.


## 1-INTRODLCTION

Laser interferometr allous one to reahze dimenstonal measurement with a lou uncertanty the 10 (lesel can reached when the measurements are made under vacuum) in ars howeses an addmonal uncertamts arises from the unknouledge of the refractive index of the medrum $n$
To determine $n$. one needs to measure the temperature the pressure, the carbon doxide concentration and the relatse humbdrt wh the help of calbrated sensors and the tden formula Verertheless the relanve uncertants is sull about I part in $11^{\circ}$ wheh limus the accurack of dimenstonal measurement
In this paper we describe an merferometer which enables one to measure distance betheen 44 and : m in arr and in vacuum with a relative uncertantr close to 1 part in $10^{*}$

## 2 PRINCIPLE [Junc 97 ||Ikes 92] [Dänd 88||Gill $83 \mid$

Fin I shous the pronciple of the apparatus $h$ is based on a double channel Michelson-tupe interferometer Illumnated bs the beam of a trequencs uneable laser drode around 1.55 um of frequenci $y$ : The beam sphtter-compensator assembth is composed of i identical Iresnel puralleleppeds optucall adhered touether and forminy an optral block. One of the paralleleprpeds has a semureflectuny coatng on the internal tave Unk one of the arms of the interterometer has a otall retlectug glass-ar of vacuum mersace the wass part of the other arm behaves as a compensatug plate The first arm of the mertermete is ended with a some cute refector mounted on a plezoeleotnc tranduct. The sewond one se ended it th an identucal reflector stmated a drstance $\mathbf{D}$ further trom the optical block

Any incident beam whose polarizsation is onented at $45^{\circ}$ to the plane of incidence fequivalent to the plane of Fig l), can be split into two orthogonal polarizations, p and s , respectively parallel and perpendicular to the plane of incidence We can consider that these two orthogonally polanzed output beams interfere independently inside the interferometer After a simple total reflection for each direction of propagation, these beams acquire a phase difference $i \mathbf{0}$ derived from the Fresnel formulae

$$
\begin{align*}
& \tan \left(\frac{\theta_{F}}{2}\right)=\frac{n_{g} \sqrt{n_{g}^{2} \sin 1-1}}{\cos t} \\
& \tan \left(\frac{\varphi_{s}}{2}\right)=\frac{\sqrt{n_{8}^{2} \sin ^{2} 1-1}}{n_{8} \cos t} \tag{21}
\end{align*}
$$

from which we deduce

$$
\tan \left(\frac{\varphi_{r}-\theta_{1}}{2}\right)=\tan \left(\frac{\Delta \phi}{4}\right)=\frac{\operatorname{cosi} \sqrt{\sin ^{2} i-1 / \mathrm{n}_{E}^{2}}}{\sin ^{2} i}
$$

where 1 is the beam angle of incidence on the total reflecting surface and ng is the refractive index of the medium An angle of incidence $\mathrm{i}=55^{\circ}$ is necessary to obtain a $90^{\circ}$ phase shift at $\lambda=633 \mathrm{~nm}$ with an opucal block made from Schotr BK 7 glass ( $\mathrm{n}_{\mathrm{p}}=1.515$ )
At the output of the optical block, a polarizing beam splitting cube separates the p and s components of the polarization The two output intensittes are

$$
\begin{align*}
& 1_{i}=\frac{1}{2}(1+\cos \varphi) \\
& 1_{1}=\frac{1}{2}(1+\sin \varphi) \tag{23}
\end{align*}
$$

where $I_{n}$ is proportional to the intensity The quantity $\varphi=2 \pi-\frac{v}{c} 2 n D=(k+\varepsilon)_{2} \pi$ is the output phase of the interferometer, c is the speed of light in vacuum. n and $v_{1}$ are defined above. is the distance to be measured. $k$ is the integer part of the interference order and $\varepsilon$ is the fractional part Irom the output beam of the imerferometer and using two perpendicular polarizers set in front of detectors. we obtain the two signals in phase quadrature given in (23)


Fig 1 Interferometnc set-up OB optical block CC comercube. P polarizer, D. and D. cosine and sine detectors. M and DM multiplexer and demultiplexer. D distance to measure . $v_{a}$ and $v_{a}{ }^{\prime}$ source $A$ frequencies . $v_{b}$ source B frequencr

After an appropriate electromic treatment (subtraction of DC levels and intenstry normalisation). these two signals are reduced to

$$
\begin{align*}
& \mathrm{I}_{i}=\cos \varphi \\
& \mathrm{I}=\sin \varphi \tag{24}
\end{align*}
$$

For control purpose these two quadrature siunals can be wisualised by sending them to the mputs of an oscilloscope set to the XY configuration The position of the spot gives directly a value of Q(Fig 2) Practical values of $\varphi$ are obtamed by adequate computer treatment of these signals


Fig 2 Lissajou higure
Aftercompuung. $I_{\text {, }}$ and I, are send to an $A D$ converter and to a sine and cosine inputs of a reversible counter This counter detemines the integer number of half fringes durng the scan of the laser frequency

To determine the fractional part. we have to

- measure $\varphi$ over 255 steps uniformly distributed over $2 \times 2 \pi \mathrm{rad}$ (the digital scan is ensured by a computer controlled piezoelectric transducer upon which the reference corner cube is mounted) - normalise the sine and cosine experimental data by a procedure which determines the exteme values (suppression of error gain adjustment $G_{X}$ and $G_{y}$ )
- determine the means-squares-circle [Raze 97] of the data recorded over $2 \pi$ rad (centre of the circle $\mathrm{O}\left(\mathrm{O}_{4} \cdot \mathrm{O}_{9}\right)$ and the radius $\left.\mathrm{R}_{0}\right)$
Such that we have finally

$$
\begin{align*}
& X=\frac{I_{r}}{G_{y}}-O_{X} \\
& Y=\frac{I_{i}}{G_{Y}}-O_{Y} \tag{25}
\end{align*}
$$

The value of $\varphi$ is given by $\varphi=\tan ^{-1}(Y / X)$ From which we extract $\varepsilon=\varphi / 2 \pi$ (where $0<\varepsilon<1$ ) with an uncertanty d $\varepsilon$ of order $10^{-3}$

## 3 - MEASUREMENT UNDER VACUUM

## 3-1-Description

The frequency $v_{l}$. of the tuneable laser diode is scanned from $v_{a}$ to $v_{a}{ }^{\prime}$, reference frequencies corresponding to two optical transitions near $1,5 \mu \mathrm{~m}$ of the acetylene molecule The absolute distance $\mathbf{D}$ can be determined for each frequency

$$
\begin{equation*}
D=(k+\varepsilon) \frac{c}{2 v} \tag{31}
\end{equation*}
$$

where $k$, is the integer part of the interference order and $\varepsilon_{i}$ is the fractional part
Dis also given by

$$
\begin{equation*}
D=(\Delta k+\Delta \varepsilon) \frac{c}{2 \Delta v} \tag{32}
\end{equation*}
$$

where $\Delta k=k_{3}-h_{3}^{\prime}, \Delta \varepsilon=\varepsilon_{3}-\varepsilon_{\mathrm{a}}{ }^{\prime}$ and $\Delta v=v_{\mathrm{a}}-v_{\mathrm{a}}^{\prime}$. The ratuo $\mathrm{c} / \Delta v$ is often called the svnthetic wavelength In our case $v_{3}-V_{3}$ is of order 292 Ghz

In this step. Ah is known unambiguously and fractional parts at the beginning and end of the scan are determined by the method explained above From equation (32) we calculate a first value of $D$ with an uncertainty around $1.5 \mu \mathrm{~m}$ denved from the uncertainty of the frequency difference $\Delta v$ ( 97 hHz in our case) and from the uncertainty of as (1.410 $)$ With this uncertainty it is not possible however to obtain a better accuracy in the measurement of $\mathbf{D}$ by using equation ( 31 ) directiv since the determination of $k$ remains ambiguous
This ambiguity can be solved by using a third frequency standard $v_{b}$ such that $v_{h}-v_{3} 1900 \mathrm{GHz}$ in our case) is three tumes larger than $v_{d}-v_{s}^{\prime}$ This allows one to reduce the uncertainty of $\mathbf{D}$ to $0,5 \mu \mathrm{~m}$ For this tatter case. since it is not possible to scan continuously the laser frequency from $v_{\text {, to }} v_{1 \text {.. }}$. the value $k_{1}-k_{3}$ cannot he measured directly It is however calculated without ambiguity from the values determined using the first step of the measurement

Equation 311 constitutes the last step of the measurement since now the uncenainty of $\mathbf{D}$ ohraned bv step 2 permits a determination of $k$, The final uncertanty in $\boldsymbol{D}$ is obtained using equation $\{3$ it and becomes $2.5 \mathrm{~nm}\left(10^{-9}\right.$ relative uncenainty for $\mathbf{D}=3 \mathrm{~m}$ )

## 3-2-Experimental results

For the moment, we realised the first step of the measure, which consists in

- determining $\varepsilon_{\text {s }}$
- counting the number of fringes during the scan of the laser diode frequency from $v_{s}$ to $v_{s}$
- determining $E_{a}{ }^{\circ}$

Because the measure of $\varepsilon_{3}$ and $\varepsilon_{3}$ 'is not simultaneous, we have to take into account any wbration or thermal expansion of our interferometer dung the measuring time of around 3 s. So that we use a second laser source which is a He-Ne laser at $\boldsymbol{i}_{\mathrm{r}}=633 \mathrm{~nm}$ It works as a classt cal interterometer At last the absolute distance $\mathbf{D}$ is $\underline{g}$ iven by

$$
\begin{align*}
& D=\left(\Delta k+\Delta \varepsilon-d_{t}\right) \frac{c}{2 \Delta v} \\
& d_{r}=\frac{v_{i}}{v_{t}}(\varepsilon,-\varepsilon,) \tag{3}
\end{align*}
$$

The quanuty $\mathrm{d}_{\text {, }}$ is the correction determined from the calculation of $\varepsilon_{\mu}$ and $\varepsilon_{\tau}$, at the bemning and the end of the scan
Distance measurements are made under vacuum ( 10 mbar and 0.1 mbar) at about 0.41 and 3 m The reference hollow corner cube in then moved from about 77 um by mean of the plezoelectric transducer The panel below summarizes the results obtained by 100 measurements each time The mean value. the experimental standard deviation (esd). the repeatability, the reproducibilitr and the global uncertaintr are calculated

|  | $10^{\circ} \mathrm{mbar}$ |  | 0.1 mbar |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 m | 0.41 m | 3m | 041 m |
| I) (m) | 2.956901 | 0.411941 | 2.956000 | 0.411930 |
| esd ( $\mu \mathrm{m}$ ) | 1.5 | 2.1 | 1.1 | 0.43 |
| cepeatabiliss (um) | 1.2 | 1 | 1 | 0.43 |
| reproducibilits (um) | 2.8 | 1.7 | 2,5 | 0.43 |
| uncertaincy (um) | 1.4 | 1.1 | 1.1 | 0.43 |
| Corner cube dindiacement (um) | around |  |  |  |
| I) (m) | - | . | 2.956821 | 0411857 |
| esd (um) | - | - | 0.9 | 0.3 |
| repeatabilits (um) | - | - | 1 | 0.3 |
| reproducibility (um) | - | - | 1 | 0.72 |
| uncertaint, $/ 4 \mathrm{ml}$ | - | - | 1 | 0.5 |

The uncertanty obtained here is of the same order than theoretical uncertainty calculated into $3-1$ The uncertanty is greater at $10^{-3}$ mbar than 0.1 mbar because we worked with the vacuum pump on . we suppose that it is the cause of interference vibrations
The displacement of the comer cube measured by the interferometer is $79 \mu \mathrm{~m}$

We also exammed the effect of the extemal temperature T (the variation is about $2^{\circ} \mathrm{C}$ ) on the absolute distance $\mathbf{D}$ and we observe a linear relation between $\mathbf{D}$ and T The factor is $12.5 \mu \mathrm{~m} /{ }^{2} \mathrm{C}$ at 3 m (F1ㅆㅇ)


Fis: alTemperarure and absolute distance vs tume
b) Absolute distance v's temperature

We submitted the iaser source at temperatures of 10 . $20^{\circ}$ and $30^{\circ} \mathrm{C}$ and we made absolute distance measurements at 3 m as described above The panel helow shows the results

|  | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $30{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| [) (m) | 2956904 | 2.956906 | 2.956905 |
| anceramat (Lmm) | 2.6 | 1 | 1.5 |

We also examined the correlation between the absolute distance measured as described above and the displacement determined by the wistle source working as a classical interierometer (Fig $\downarrow$ )

We can see that the two curves have the same behaviour the visible measurement is 1.4.7um and the infrared one is $1.61 \mu \mathrm{~m}$


Fig + Absolute distance and visible measurement vs ume
We prove that we can measure an absolute distance with an uncertanty of $2 \mu \mathrm{~m}$ We show that a second source is necessary to make a correct measurement of $\mathbf{D}$ We show too that our svstem can detect any variation of $\mathbf{D}$ around a face value, 0.41 or 3 m
If the method is applied to distance measurement in air the relative uncertainty will be increased to $10^{-6}$ because of the unknowledge of the refractive index $n$

## 4- MEASLIREMENT IN AIR OR ANY GASEOLS MEDILM

In order to make distance measurement in air (or another gaseous medium). a new type of source is used with the interferometer described above The source in question is an air wavelength standard developed at the BNM-INM (Bureau National de Metrologie-Insutut National de Metrologe) Its relative uncerainty $\frac{d \lambda}{\lambda}$ is about I part in $10^{x}$ and it is insensitive to the refractive index of the medium. generally air FIg 5 shows the pnnciple of this wavelength standard


To interferometer
Fig 5 Air wavelength standard

The solurce is hased on a plane-plane Fabry Perot caviti, with a zerodur spacer to which the silica minors are opucallv adhered The gold coated mimors have a reflecurity of $97 \%$ at 633 nm and even higher in the infrared ( 1550 mm )
The design of this svstem allows one to determine unambiguoush the interference order $h$ of the transmission peak to which the frequenci v: of a laser diode is locked after lochnge the frequenct of the laser source trachs in real ume the refractue index fluctuatoons such that $n v_{i}=$ constant The wavelength of the source gim br $\frac{2 e}{h}$ remains unaltered This wavelength is determined hy measunny e. under vacuum, whth the help of an optical standard and the method of exact tractions 1 ung this ststem, the three preceding reference frequencies $v_{3} . v_{s}^{\prime}$. and $v_{r}$ are replaced br the reference wavelength guen bu a laser dode loched on different transmission peahs of known merference orders The distance $\mathbf{D}$ is determuned as descnhed ahove
The measurement uncertannt is limited be the wavelength standard (about $10^{-x}$ ) and is free of refractue indey corrections

## S. (OXCLISION AYD PERSPECTINES

In this paper we have outhned the pnnciples of distance measurements using a device based on a innge countung sigmameter and the concept of sinthetic wavelengths A prototype interferometer has heen developed at (SO) liesure in order to prove the feasibility of the first step of the measurement We prove that we can measure an absolute distance up to 3 m with an uncertants of Zum in using one sinthetic wavelength and the continuous scan between two frequencies it will allow us to hinh wo discrete frequencies (sinthetic wavelength about 310 um ) thus reach an uncertarntw of 0.1 um Finalls we will use the hasic wavelength ( 1.54 m$)$ to measure the absolute distance with an absolute uncertaintw about 3 nm
The nextstepconsists in assoctating our interiernmeter and the arr-wavelength standard and to show that ise can make distance measurement in air without ant problem

## REFEREVCES:

[Hunc 97] P Iunca H Elandalouss 11 Himbert. I Pinard A Razet "A New Optical Wavelength Ratın Measurement Apparatus The Fnnge Countung Sumameter⿻
 K thesawa $K$ Isozaki E Ogra T leda Measurement of thsolute Distance


Wind 881 K Dandlitier $R$ Thalmann D Pronsue Twowavelength Laser Interierometr






