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ABSTRACT
This paper describes how to propagate approximately additive random perturbations through any kind of vision
algorithm step in which the appropriate random perturbation model for the estimated quantity produced by the
vision step is also an additive random perturbation. We assume that the vision algorithm step can be modeled
as a calculation (linear or non-linear) that produces an estimate that minimizes an implicit scalar function of the
input quantity and the calculated estimate. The only assumption is that the scalar function be non-negative, have
finite first and second partial derivatives, that its value is zero for ideal data, and that the random perturbations
are small enough so that the relationship between the scalar function evaluated at the ideal but unknown input and
output quantities and evaluated at the observed input quantity and perturbed output quantity can be approximated
sufficiently well by a first order Taylor series expansion.

The paper finally discusses the issues of verifying that the derived statistical behavior agrees with the experimen-
tally observed statistical behavior.
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1. INTRODUCTION
Each real computer vision problem begins with one or more noisy images and has many algorithmic steps. Devel-
opment of the best algorithm requires understanding how the uncertainty due to the random perturbation affecting
the input image(s) propagates through the different algorithmic steps and results in a perturbation on whatever
quantities are finally computed. Perhaps a more accurate statement would be that the quantities finally computed
must really be considered to be estimated quantities.

In contrast to this point of view is the view prevalent in digital geometry as can be seen from the papers in this
proceedings. Digital geometry has developed methods to take care of the quantizing error arising from the spatial
sampling of digital images. For example, there are digital geometry methods for determining whether a digital arc
arises from a straight line, whether two or more lines are colinear, whether two or more lines are parallel, as well as
methods for determining bounds for the error induced by the quantizing on computations such as centroids. And
there are digital geometry methods for computing skeletons. Common to most of these methods is the perspective
that the only error is the quantizing error. However, in most machine vision problems this assumption is certainly
not true. There is measurement error, lens distortion error, feature extraction error due to noise, occlusion error,
and quantizing error. In this case, the question of whether a digital arc could have arisen from a straight line should
not be answered in the negative if it turns out that a straight line cannot pass through the ribbon determined by
the pixels of the digital arc. This is because some of the pixels themselves may be in erroneous positions due to
uncorrected lens distortion error or noise, which may in much of the image cause positional error that even exceed
the quantizing error. In this case, we should regard the pixel positions on a given digital arc as having been randomly
perturbed and questions such as whether two digital arcs could have arisen from parallel line segments should be
answered statistically, where the basis of the statistical test is the covariance of the estimated quantities. In the
case of the parallel line question these estimated quantities are the angles of the lines segments and a proper test
would examine the squared modulo difference of the angle estimates normalized by the sum of the estimated angle
variances.
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Once we have the perspective that what we compute are estimates, then it becomes clear that even though the
different ways of estimating the same quantity typically yield the same result if the input quantities are not affected
by a random perturbation, it is certainly not the case that the different ways of estimating the same quantities yield
an estimate with the same distribution when the input is perturbed by a random perturbation. It is clearly the case
that the distribution of the estimate depends on the distribution of the input random perturbation and the method
or type of estimate. An example of this is the typically poor performance of matching schemes in noisy data using
perspective projection invariants over matching schemes that use the full perspective projective equations. However,
both work perfectly with noiseless data.

With this in mind, it is then important to understand how to propagate a random perturbation through any
algorithm step in a vision problem. The difficulty is that the steps are not necessarily linear computations, the random
perturbations are not necessarily additive, and the appropriate kinds of perturbations change from algorithm step
to algorithm step. Nevertheless, there are many computer vision and image analysis algorithm steps in which the
appropriate kind of random perturbation is additive or approximately additive. For these kinds of steps one basic
measure of the size of the random perturbation is given by the covariance matrix of the estimate.

In this paper, we describe how to propagate the covariance matrix of an input random perturbation through any
kind of a calculation (linear or non-linear) that extremizes an implicit scalar function, with or without constraints,
of the perturbed input quantity and the calculated output estimate. The only assumption is that the scalar function
to be extremized have finite first and second order partial derivatives and that the random perturbations are small
enough so that the relationship between the scalar function evaluated at the ideal but unknown input and output
quantities and the observed input quantity and perturbed output quantity can be approximated sufficiently well by
a first order Taylor series expansion. The propagation relationships do not depend on what algorithm is used to
extremize the given scalar function.

As a related case, the given propagation relationships also show how to propagate the covariance of the coefficients
of a function for which we wish to find a zero to the covariance of any zero we can find.

The analysis techniques of propagation of errors is well known in the photogrammetry literature. The Manual of
Photogrammetry (Slama, 1980) has a section showing how to determine the variance of Y where Y =F(X) from
the variance of X. The generalization of this to find the covariance matrix for Y given the covariance matrix for X
is rather straightforward. Just expand F around the mean of X in a first order Taylor expansion and consider that
Y is a linear function T of X. Once the coefficients of the linear combination is known, so that the randomness of
Y can be approximated by Y — jy T(X — jx), then the covariance matrix Eyy of Y is easily seen to be given
in terms of T and the covariance matrix Exx of X by Eyy TEiT' (Mikhail, 1976; Koch, 1987). This only
works well for cases where the function F can be given explicitly. The problem we discuss here is one in which the
function F is not given explicitly, but Y is related to X in a specific way. The techniques we employ are well-known
in statistical and engineering communities. There is nothing sophisticated in the derivation. However, this technique
is perhaps not so well known in the computer vision community. There are many recent vision-related papers that
could be cited to illustrate this.

The paper concludes with a discussion of how to validate that the software which we use to accomplish the
calculation we desire actually works. We argue that this validation can be done by comparing the predicted statistical
behavior with the experimentally observed statistical behavior in a set of controlled experiments.

2. THE ABSTRACT MODEL
The abstract model has three kinds of objects. The first kind of object relates to the measurable quantities or data.
There is the unobserved N x 1 vector X of the ideal unperturbed measurable quantities. We assume that each
component of X is some real number. Added to this unobserved ideal unperturbed vector is an N x 1 unobserved
random vector L�X of noise. The observed quantity is the randomly perturbed vector X + LXX.

The second kind of object relates to the unknown parameters. There is the unobserved K x 1 vector 0. We
assume that each component of ® is some real number. Added to this ideal unperturbed vector is a K x 1 unobserved
vector LO that is the random perturbation on E induced by the random perturbation /JX on X. The calculated
quantity is the randomly perturbed parameter vector e = e + e.

The meaning of the data vector X and the parameter vector G is that there is a physical process which produces
X on the basis of 0. The law governing this production process is known. The third kind of object directly relates
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to this law. It is a continuous non-negative scalar valued function F which relates the unobserved vectors X and
®: F(X, e) = 0. Since F is non-negative, this is the smallest value that F can take. Therefore, for a given X, the
corresponding ® must minimize F(X, €).

of course neither X nor 0 are observed. Rather only X, the randomly perturbed value of X is observed. From
it we desire to infer the value for ®. But because X = X + X israndom, the inferred value e = ® + ®that we
compute for 0 will be random. It will not be the case that F(X, e) = 0. However, the estimation problem that we
set up to infer a value ® for ® will minimize F(X, 0). Therefore, in this situation it is natural to require that the
function F to have finite first and second partial derivatives with respect to each component of E and X, including
all second mixed partial derivatives taken with respect to a component of e and with respect to a component of X.

The basic inference problem is: given X = X + tX, determine a 0 = + ® to minimize F(X, Ô) given the
fact that 0 minimizes F(X, e). For this estimate ® we want to compute its covariance matrix.

If 6 is computed by an explicit function h, so that = h(±), the function F is just given by F(X, G) =
(e —h(x))'(e — h()). However, our development will handle as well the determining of the covariance of a e which
is known to minimize F(X, E'), without requiring any knowledge of how the minimizing ® was computed.

It is not unusual for some computer vision problems to be constrained problems. In this case the parameter vector
e satisfies some constraints which we represent as s(®) = 0. The unobserved ideal €, satisfying the constraints
s(®) = 0, and the unobserved ideal X minimize the scalar function F. In the constrained problem, X = X + t-X
is observed and the problem is to determine that E = ® + i® satisfying the constraints s(e)= 0 which minimizes

F(X, 0).
We will see that the covariance matrix for O will be a function of the unobserved unperturbed X and 0, the

covariance matrix for the perturbation LXX, and the partial derivatives of F evaluated at X and 0. We will be able
to develop estimates for this covariance matrix in terms of the observed X , the inferred 0 , the covariance matrix for
the perturbation LXX, and the partial derivatives of F evaluated at X and 0.

Finally, we say what this abstract model is not. It is not a model for the general problem in which the covariance
matrix for X is known and the inferred value for 0 minimizes a non-negative F(X, 0). It is not a model for this
problem because this problem does not have the assumption that there is an ideal X and 0 and the ideal 0 minimizes
F(X, 0) and this minimum value of F is 0.

3. EXAMPLE COMPUTER VISION PROBLEMS
There is a rich variety of computer vision problems which fit the form of the abstract model. In this section we
outline a few of them, specifically: curve fitting,(Koch,1987) coordinated curve fitting, local feature extraction,
exterior orientation, and relative orientation. Other kinds of calculations in computer vision such as calculation of
curvature, invariants, vanishing points, or points at which two or more curves intersect, or problems such as motion
recovery (Jerian and Jam, 1984) are all examples of problems which can be put in the abstract form as given above.

3.1. Curve Fitting
In the general curve fitting scenario, there is the unknown free parameter vector, 0, of the curve and the set of
unknown ideal points on the curve {i, . . . , XN}. Each of the ideal points is then perturbed. If iz7 is the random
noise perturbation of the 2h point, then the observed point n point is I, = x + L�z. The form of the curve is
given by a known function f which relates a point on the curve to the parameters of the curve. That is, for each ideal
point we have f(z,, 0) = 0. We also assume that the parameters of the curve satisfy its own set of constraint
equations: h(0) = 0. The curve fitting problem is then to find an estimate 0 to minimize f2(, 0) subject to
h(O) = 0. To put this problem in the form of the abstract problem we let

X = (s1,...,ZN)
I = (z1+Lz1,...,3n+'2N)

F(X,®,A) =

Then the curve fitting problem is to find e and A to minimize F(X, O, A) where F(X, 0, A) = 0.



3.2. Coordinated Curve Fitting
In the coordinated curve fitting problem, multiple curves have to be fit on independent data, but the fitted curves
have to satisfy some joint constraint. We illustrate the discussion in this section with a coordinated fitting of two
curves and a constraint that the two curves must have some common point at which they are tangent.

Let (x1, . . . , xi) be the ideal points which are associated with the first curve whose parameters are çb and whose
constraint is h1(çb1) = 0. Each point a satisfies fi(z2, çb) = 0, i = 1, . . . , I.

Likewise, let (yi, . . . , yj) be the ideal points which are associated with the second curve whose parameters are
and whose constraint is h2('çb2) = 0. Each point Yj satisfies f2(y, , 'çb2) = 0, j = 1, . . . , J.

The coordinated constraint is that for some unknown z,

fi(z,'cL'i) : 0

f2(z,'çb2) =: 0

8f 8f2
--—(z,çb1)

:

The observed points and i are related to the corresponding ideal points by

i = xi + /:1
j = Yj + EYj

To put this problem in the framework of the abstract model, we take

I =
e = (i,1,t,2)
A = (A1,A2,3,A4,A5)

and define

F(i, O, A) = Et1f?(, + E1f(y, 1P2) + )tihi(ii) + A2h2(ç2)

+ \3f1(z,i,bl) + A4f2(z,i,;2) + 5[_(z,ibi) —

The coordinated curve fitting problem is then to determine a ® and A to minimize F(X, E, A), where the
perturbed e considered related to the ideal 0 by C-) + Lê.

3.3. Local Feature Extraction
There are a variety of local features that can be extracted from an image. Examples include edges, corners, ridges,
valleys, flats, saddles, slopes, hillsides, saddle hillsides, etc. Each local feature involves the calculation of some
quantities assuming that the neighborhood has the feature and then a detection is performed based on the calculated
quantities. For example, in the simple gradient edge feature, the quantity calculated is the gradient magnitude
and the edge feature is detected if the calculated gradient magnitude is high enough. Here we concentrate on the
calculation of the quantities associated with the feature and not the detection of the feature itself.

To put this problem in the setting of the abstract problem, we let ebe the vector of unknown free parameters of
the feature and X be the unobserved neighborhood array of noiseless brightness values. We let X be the perturbed
observed neighborhood array of brightness values, X =X LXX, and ® be the calculation of the required quantities
from the perturbed brightness values X. The form the of feature is given by the known function f which satisfies
that f(X, 0) = 0. The feature extraction problem is then to find the estimate 0 to minimize F(X, 0) =f2(X, 0).
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3.4. Exterior Orientation
In the exterior orientation problem, there is a known 3D object model having points (z,, y, zn), n = 1, . . . , N. The
unobserved noiseless perspective projection of the point (x,, y,, z) is given by (u,, va). The relationship between
a 3D model point and its corresponding perspective projection is given by a rotation and translation of the object
model point, to put it in the reference frame of the camera, followed by a perspective projection. So if it' represents
the triple of tilt angle, pan angle, and swing angle of the rotation, t represents the x-y-z-translation vector, and k
represents the camera constant (the focal length of the camera lens), we can write:

I I( u,v) = (pn,qn) where
rn

(pn,qn,rn =

and where R(,b) is the 3 x 3 rotation matrix corresponding to the rotation angle vector b.

The function to be minimized can then be written as:

f(u,v,i,b,t) =

t — k(1,0,0)((,,z+t) 2
) — {u —

(0,0,

+ {v —k°' 1,O)(R('çb)(z,y,z)' +t)12n
(0, 0, 1)(R(i,b)(z, yn, zn)' + t)

To put this problem in the form of the abstract description we take

x =

e = (b,t)

6 =
('c;,E)

and define

F(X, Ô) = E=1f(ü,,,è)

The exterior orientation problem is then to find a O to minimize F(±, O), given that F(X, 0) = 0. Because F is
non-negative it must be that minimizes F(X, €).

3.5. Relative Orientation
The relative orientation problem can be put into the form of the abstract problem in a similar way to the exterior
orientation problem. We let the perspective projection of the point on the left image be vL) and the
perspective projection of the tL point on the right image be (uR, vAR). Then we can write that

(UnL,VnL)' = (zn,ynYandtt

I k
(uR,VnR) = (pn,qn)

where (pa, qn, r) is the rotated and translated model point as given in the description of the exterior orientation
problem.

The observed perspective projection of the 7th model point is noisy and represented as (u,I) = (u+ L�u, v, +
Then taking

X = (u1,, V1L, U1R, V1R, ,UNL, VNL, UNR, VNR)



k = (Ü1L, V1L, U1R, ' • • , UNL, VNL, UNR, VNR)

0 = (z1,yl,zl,...,XN,yN,ZN,cb,t)

0 =

the relative orientation problem is to find E to minimize

F(X, 6) = E=if(uR, VnR, Yn, Z ?/), t) + f(Uni, Zn, Yn, Zn, O 0)

4. ZERO FINDING
Zero finding such as finding the zero of a polynomial in one or more variables occurs in a number of vision problems.
Two examples are the three point perspective resection problem and some of the techniques for motion recovery.
The zero finding problem is precisely in the form required for computing the covariance matrix as described in
the solution section. Let X be the ideal input vector and X be the observed perturbed input vector. Let be a
K x ivector zeroingthe K x 1 function g(X, ®); that is, g(X, ®) = 0. Finally, let ® be the computed vector zeroing
g(X, E'); that is, g(X, ®) = 0.

5. SOLUTION: UNCONSTRAINED CASE
For the purpose of covariance determination of the computed ® =E + Lie, the technique used to solve the ex-
tremization problem is not important , provided that there are no singularities or near singularities in the numerical
computation procedure itself.

To understand how the random perturbation /X acting on the unobserved vector X to produce the observed
vector X =X + iX propagates to the random perturbation L& on the true but unknown parameter vector ® to
produce the computed parameter vector E = ® + ®, we can take partial derivatives of F with respect to each of
the K components of E forming the gradient vector g of f. The gradient g is a K x 1 vector function.

g(X,®) =

The solution ® = E + LE extremizing F(X + /X, E + Li®), however it is calculated, must be a zero of g(X +
I:X, ® + Li®). Now taking a Taylor series expansion of g around (X, ê) we obtain to a first order approximation:

'KxN a FKxK
gKX1(x + /2X, e + Li®) = gKXl(X, e) + X,e)xAT + x,e)eKXl

But since e + Le extremizes F(X + LXX, 0 + L€), g(X + LXX, ® + L€) = 0. Also, since 0 extremizes F(X, €),
g(X, ®) = 0. Thus to a first order approximation,

0 =
-: (X, ®)X + (X, )L8

Since the relative extremum of F is a relative minimum, the K x K matrix

(X,e)= (x,e)
must be positive definite for all (X, 0). This implies that (X, 0) is non-singular. Hence () exists and since
it is symmetric we can write:

/
=
-{(x,e:)}-' (X,e)L�X

This relation states how the random perturbation LX on X propagates to the random perturbation L0 on 0. If
the expected value of LXX, E[LX], is zero, then from this relation we see the E[i0] will also be zero, to a first
order approximation.

This relation also permits us to calculate the covariance of the random perturbation Li®.
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ELSe = E[/eLe']
=

—
— 'a®' ax

I —1
t9g _18g ag ôg= L:xLx_i

Thus to the extent that the first order approximation is good, (i.e. E[L®J =0), then

Eee ELele

The way in which we have derived the covariance matrix for L® based on the covariance matrix for /X requires
that the matrices

(X,e) and

be known. But X and E are not observed. X + tX is observed and by some means ® + L is then calculated.
So if we want to determine an estimate for the covariance matrix , we can proceed by expanding g(X,G)
around g(X + LXX, ® + L®).

g(X, ®) = g(X + /2X, ® + Li®) - (X + LXX, e +L)X - (X + LXX, e +e)e
Here we find in a similar manner,

e=
This motivates the estimator J®® for E®® defined by

Ei®L® = (±, Ô):(±, O)Et è)(±, Ô)
So to the extent that the first order approximation is good, =

The relation giving the estimate E in terms of the computable

(O)and t,O)

means that an estimated covariance matrix for the computed e = e + L® can also be calculated at the same time
that the estimate ® of e is calculated.

5.1. Bayesian Mean Estimation
Consider the case when we observe a random vector X which is known to come from a Normal distribution with
unknown mean ê and known covariance matrix E. The prior distribution on e has mean 0 and known covariance
matrix E99. From the observation t we are to find è, the most probable value for the mean 0. In this case the
function F to be minimized by choice of 0 is:

F(X, 6) = (± - 6)''(X —6) +

In this case we can compute

g(±,Ô) =

= -2E(X — 0)' + 2E08®



We can find the optimal value for ® by solving for that E that makes g(±, Ô)= 0. We find that

6 = (E +

From this it is easy to explicitly determine E.

I \1 Iv'
Ldcé 2J±; + Li$e) + L$®)

Proceeding to compute the covariance matrix of t implicitly, we have

i9g = 2E± + 2Eee

and

ox — 2E;tx

Now substituting into the equation for the implicit computation of E there results

Eee = (2E+ 2ee)'(—2E)E(—2>)(2E± + 2E®®)'I' \—1v I' c'= 1Lt + LiO®) + zeoj

Notice that in this case the covariance matrix for the estimate ® does not depend on the ideal, non-observed
value for X. But this is not always the case as our next example shows.

5.2. Regression
As a special and classic case of the unconstrained optimization, we consider the regression problem of finding ® to
minimize F(X, e)= (X — JO)'E(X — Jo). For this F,

g(X, e) = = —2J'EJ®

Hence,

= 2J'>',J
and

2EJxx

Then,

= (2J'EJ) '(—2E J)J(—2E J)'(2J'Y2', J)'
= (J'EJy'

5.3. Line Fitting
Another special case of the unconstrained optimization problem is the general line-fitting problem, which we illustrate
for two-dimensional data. Assume that the unobserved points unperturbed points (r, y,), n = 1, . . . , N, lie on a
line s, cos 9 + y sin9 — p = 0. In the line-fitting problem, we observe (4,), noisy instances of (x,, y). (4,)
are related to (z,, y,) by the noise model:

(4(z,'\ (cos9!)Yn) \sin9
where are independent and identically distributed as N(0, o.2).
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To estimate the best fitting line parameters (9, ) using the least squares method, we use the criterion function
which is the sum of the squared distances between the observed points and the fitted line:

F(X,®) = (xncos9+ynsmn9p)2

where X = (z1,Yi, • ., N, YN) and ® = (9, p).

Now, / aF
8F ae

g2X1(x,e)=_= (

Letting

=

1zn/1y = Yn

S =

s =

s = — —

we can compute

= (S — S + N(p — p))sin 29 + 2(S,, + Npj.)cos 29 + 2Np(j sin9 — jcos9)

= —2N( cos 9 + sin 9 — p)

Then,

/1' / &2F 8F
8g2X2 ( 80 \ f

82F 82F'op \;• -;r
where

= 2[S — S + N(p — p)] cos 28 — 4(S, + Np/.L)sin 29 + 2Np( cos 9 + sin 9)

= 2N

= = 2N( sin 9 — cos9)

and
/ &2F 82F 82F 82F 82F 82F

2x 2N
— ( 7 7 808z2 898V2

02F &2F 82F L92F 82F 82F
\ aPaZi 0P5Y1 OpOz2 8P8Y 8P8'N 8P8YN

2 x
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where

I92F — 2[— sin 28 + y, cos 28 + psin8]908a
—

82F - 2[z cos 29 + y, sin 20 — pcos 9]8981/n
—

t92F - —2cos 9.9p8z —

82F - —2 sin 9
19p81/n

—

Since the parametric equation of the line is given by

/ s \ 1 cos 9 \ / — sin9
y ) =

sin9 ) + cos )
substituting the above expressions for z, and y7 into the partial derivatives, we obtain

82F
19919

= 2)tcos9
82F

898 = 2)tsin8
82F — —2cos 9

8p8n
—

82F - —2 sin9
8/ 9 1/n —

For the given noise model, the covariance matrix Exx is given by:

cos2 9 sin9 cos 9 0 0 0

sin 9 cos 9 sin2 9 0 0 0

o 0 cos2 9 sin Ocos 0 0

= 2 0 0 sinG cos 9 sin2 9 0

o 0 ... 0 cos2 9 sinG cos 8

o o o ... cos0 sin2 9 )
Now we can easily do the required multiplications.

i9g' 8g
/

Exx = 4a2 ( Ln1 -ni
n)\ N
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Define

1 =

s = (\A)2
Then we have that

/L pcos9 — sin9

It!/ psinO+pAcosO
s = sin29S: = cos2 OS

szy = —sin9cos9S

Thus,

j — mu = (/ — p2)cos 29 + 2p sin 29

= p2
2

sin 20 + pj cos 20

IhcosO+/22sin9 = p

Then, after substituting these expressions and simplifying,

( 3 (2(S+4) —2Np—
—2Nj 2N

Hence,

I 82F 83F \1(- — i (N N/IA

)
—

2NS Nih. S + Ni4

Using these expressions, the covariance matrix of e, can be computed as:

/ oe 08p
ç2x2 —

0p0 Opp

= (x, e)(X, e)Exx(X,e)(X, e)
We will find that

I_i_ i-I S S—

N S
This result has a simple geometric interpretation. In the coordinate system of the line where 0 is the point on

the line closest to the origin, ji, is the mean position of the points and S is the scatter of the points. The value

12



of j acts like a length of an arm relative to a moment calculation. If the mean position of the points on the line
is a distance of IiI from the origin on the line, then the variance of the estimated p increases by 4o2/5• This
says that the variance of the estimate p is not invariant to the translation of the coordinate system, a fact that is
typically overlooked.

An immediate application of having the covariance of the estimated parameters of fitted lines is for grouping.
One of the grouping questions is whether or not two fitted line segments should be grouped together because they
are part of the same line. Depending on the grouping application, it may make a difference how far apart the line
segments are. However the issue of whether the fitted line segments could have arisen from the same underlying line
can in either case be answered using the covariance of the fitted parameters.

Let O be the (9, p) estimated line parameters from the first line segment and let ®2 be the estimated line
parameters from the second line segment. Let be the covariance matrix associated with ® and let
be the covariance matrix associated with 2 . The hypothesis to be tested is that ® = e2 . A test statistic for this
hypothesis is

x2 ( — e2)(J,11 + E®22)( — ®2)

Under the null hypothesis, x2 has a Chi-square distribution with 1 degree of freedom. We can reject the null
hypothesis that ®i = 02 at the significance level if x2 < Ta where the probability that a x2 variate with 1 degree
of freedom is less than a is Ta.

6. SOLUTION: CONSTRAINED CASE
The constrained problem is: given I , determine that O satifying the constraints s(ê) = 0 which minimizes the
function F(X, ®). Using the Lagrange multiplier method, the function to be minimized is F(X, E) + s(®)'A. As
before, we define g(X, ®) = F(X,€). We must have at the minimizing (X, ®),

(F(±,è) s(è)'A) =0

In the case of no noise with the squared criterion function as we have been considering, F(X, ®) = 0. This is certainly
the smallest F can be given that F is a squared criterion function. Hence it must be that g(X, E) =(X,€) = 0.
This implies that ()A = 0, which will only happen when A=0 since we expect , a K x L matrix where K > L,
to be of full rank.

Define

S(X, e, A) = ( g(X, e) + IA' s(®)

Taking a Taylor series expansion of S,

S(X, e, A) = S(X + /X, e + Le, A LA) - LX - Le- LA
Because e satifies the constraints s(e) = 0 and the pair i(X, ®) minimizes F(z, €), it follows that S(X, e, A) = 0.
Furthermore, at the computed ® = Lh and A = A + tA, S(X + tX, L, A + LA) =0. Hence,

= + LA
Writing this equation out in terms of g and s, and using the fact that A =0, there results

(j )(=(f)zx
From this it follows that

—lljc,L.®,tAJi 'XX
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where

A=( ?'\ae 0

and

B=-( aó
and all functions are evaluated at E and X. For the estimated value EL®LA Of E®A, we evaluate all functions
at E and A.

As a special but classic case of this consider the constrained regression problem to find ® minimizing

F(X, e) = (X — Je)'(X -J)
subject to H'® = 0. In this case,

(2J'J H
A= H' 0

and

B = - ( 2J)
Then

1 1 (2J'J)'[I — H(H'(2J'J)'H)'H'(2JJ')'] (2J'J)'H(H'(2J'J)'H)'A =
t\ (H'(2J'J)'H)'H'(2J'J)' —(H'(2J'J)'H)'

and

A'B — I (2J'J)'[I — H(H'(2J'J)'H)'H'(2JJ')'}2J'— —

'\ (H'(2J'J)'H)'H'(2J'J)'2J'

From this it directly follows that if Exx = 2I, then

E®® = cr2(J'J)'[I — H(H'(JJ')'H)'H'(J'J)']

7. METHOD LIMITATIONS
In this section we briefly discuss when the derivations provided in the previous section are valid. They are valid when
first order approximations in the gradient expansion are valid, meaning that the second derivatives of the gradient
of the criterion function must be uniformly much smaller than the first derivatives of the gradient.

The following is an example invented by Georgy Gimelfarb of a criterion function of scaler variables for which
there are some locations in which the second derivative of the gradient of the criterion function is not much smaller
than the first derivatives of the gradient.

I (X—e)2+K(X0—e)2 if® �Xo
F(X,®) = (X-®)2 if -X<®<X0

L (X — ®)2 + K(Xo — ®)2 f ® < X0

For this criterion function, the gradient is

I —2(X—®)—2K(Xo—®) if®�Xo
g(X,®) = —2(X —®) if —X0 < ® <Xo

I. —2(X — ®) — 2K(Xo — ®) if ® � —X0

14



And the first partial derivative of the gradient is

a I 2+2K if®�X0
____Q = 2if—Xo<e<X0a® 2+2K if®<—X0

From this it is clear that when K > 1 , the second partial of g with respect to ® will be infinitely large at the
points X = Xo and X = —Xo. In this case the variance of as computed by the method of the previous section
will be wrong.

8. CLOSEST DISTANCE
In the case that the criterion function being minimized is composed of a sum of squares where each term in the sum
represents the Mahalnobis distance between an observed point and the closest point on a curve of fixed form, there
is considerable simplification of the formula for the covariance of the estimated parameters of the curve. Suppose
the curve has the form h(z) = 0, where we have supressed the free parameters of the curve. Suppose that is the
observed noisy point having covariance E. Then the term in the criterion function corresponding to will be

min{( — — x) I h(z) = O}

Using first order approximations, it is not hard to show that this minimizing value is

h2(1)

ac

In this case the criterion function can be written

F(X,e) =
— ___________— L. ah(n)'E 8h()n1 n

where E, is the covariance of Proceeding with this form of the criterion function, we take its partial derivative
with respect to e.

g=
— \ 8 f2(s,,8)—

ae O)'E(z, )
= e)'EJ(, e)2f(z, ®) —

((z,®)'E(x, e))
f2(a,®) ((x, ®)'(z, ®))

((z,e)'E,(z,, e))
N Pj( 0)— ' —

2 ®f(, ) 2

e)'E.(, e))
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The next step requires us to take more partial derivatives. But the general form that we are taking a partial
derivative is of a product of a scaler with a vector. Suppose that f is a scaler function of a K x 1 vector variable E
and that v is a M x 1 vector function of a vector variable ®. Then,

is a K x M matrix defined by

f(e)v(®) = f(®)v(®)' +

Using this formula, we can proceed.

8g
N

______________—

TL=1
® ®"E (ê)n, ) 8z

2(xfl®)( )'
i9f __________________

€)'E(z, )

f2(Z®)® 1PL, e)'>2rj(Zn, ®))

—

/ 8 "Pi(, e)/E4L(,_e))'\
2f(Z,®)(z,

I ao
e)i 21t L(Z,e)1f(zfl,e)) )\ 8x

We evaluate the partial derivative at (ai,. . ., ZN) where

f(Z,®)=O,n=1,...,N
Therefore,

I aot9g t9f, L(Z,e)
)

=
f(z?, EE?J(, ®)

1= 2 e)(z,°' ®"E L(z,) 8x

= 2' e)'E(, 0)

8g — 2f(Z,0)—-— ae +—
8Zn f(z,0)'Ef(Z,®)

(L8f ae(zn,®)
e)'E(z,0))2—(z, 0)
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afia
82rL ((e)'E(xe)) 'II a \ôf _____________

ozn ((®)IE(z®))2 )
2f(,®)—(,®)

I

—___________________

\ ax
We evaluate the partial derivative at (z1, . . . , XN) where

f(,e)=O, n=1,...,N

Therefore,

---- ôf
azn

= 2—(,e) ( a®

1= 2—(,O)ôZfl
- - (zn,e)1En(zn,e))

Let,

— (8g' t9g' 0g'\-
( e)((,i, e)1 (zN,®)/(zN, ®)I \= 2
L(1,ey1 ) ®)'EN

Then,

ôg Iôg
N L ,e)1-( ®"E _L(z,e)(z,e)1= ae( n'

2
n=i [(z, e)1E}L(,e)]
N

= ______
n=i ax (zn, e)'(, G)

=

Finally,

fag\'ag' 8g ft9g\1= (\) xx-5)
fag\'28g fôg\'= )

/ t9g —1= 2)
—1/ N

n=1 ax(' ax
— 2 2 -

®)'E e))
—1IN

— I ae(2n e)' \—
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9. VALIDATION
There are two levels of validation. One level of validation is for the software. This can be tested by a large set of
Monte-Carlo experiments off-line where we know what the correct answers are.

Another level of validation is on-line reliability. Here all that we have is the computed estimate and estimated
covariance matrix for the estimate.

9.1. Software and Algorithm Validation
Software for performing the optimization required to compute the estimate 0 is often complicated and it is easy
for there to be errors that are not immediately observable. For example, there we may have optimization software
that produces correct answers on a few known examples but fails in a significant fraction of more difficult cases
that we are not specifically trying out. One approach in testing that the software is producing the right answers is
to test the statistical properties of the answers. That is, we can statistically test whether the statistical properties
of its answers are similar to the statistical properties we expect. These expectations are whether the mean of the
computed estimates is sufficiently close to the population mean and whether the estimated covariance matrix of the
estimates is sufficiently close to the population covariance matrix. Rephrasing this more precisely the test is whether
the computed estimates could have arisen from a population with given mean and covariance matrix.

Consider what happens in a hypothesis test: a significance level, a, is selected. When the test is run, a test
statistic, say , is computed. The test statistic is typically designed so that in the case that the hypothesis is
true, the test statistic will tend to have its values distributed around zero, in accordance with a known distribution.
If the test statistic has a value say higher than a given o, we reject the hypothesis that the computed estimate
is statistically behaved as we expected it to be. If we do not reject, then in effect, we are tentatively accepting
the hypothesis. The value of o is chosen so that the probability that we reject the hypothesis, given that is the
hypothesis is true is less than the significance level a.

The key in using this kind of testing is that we can set up an experiment in which we know what the correct
answer for the no noise ideal case would be. Then we can additively perturb the input data by a normally distributed
vector from a population having zero mean and given covariance matrix. Then using the analytic propagation results
derived earlier in the paper, we can derive the covariance matrix of the estimates produced by software.

If we repeat this experiment many times just changing the perturbed realizations and leaving everything else
the same, the experiment produces estimates O ,. . . , 6N that will come from a normal population having mean 8,
the correct answer for the ideal no noise case, and covariance matrix E, computed from the propagation equations.
Now the hypothesis test is whether the observations 9 , . . . , 8N come fron a Normal population with mean 8 and
covariance matrix E. For this hypothesis test, there is a uniformly most powerful test. Let

B = E1(8 — )(8 —

Define

A = (e/N)PN/2fBEI2
x ep(—[tr(BE') + N( — 9)'E'(— 8)])

The test statistic is:
T = —21og\

Tinder the hypothesis, T is distributed as:

X(p+i)/2+p
where p is the dimension of 9.

So to perform a test that the program's behavior is as expected we repeatedly generate the T statistic and
compute its empirical distribution function. Then we test the hypothesis that T is distributed as the x2 variate using
a Kolmogorov-Smirnov test.



9.2. On-line Reliability
For the on-line reliablity testing, the estimate is computed by minimizing the scalar objective function. Then based
on the given covariance matrix of the input data, an estimated covariance matrix of the estimate is computed using
the linearization around the estimate itself. An on-line reliablity test can be done by testing whether the each of the
diagonal entries of the estimated covariance matrix is sufficiently small.

10. CONCLUSION
Making a successful vision system for any particular application typically requires many steps, the optimal choice
of which is not always apparent. To understand how to do the optimal design, a synthesis problem, requires that
we first understand how to solve the analysis problem: given the steps of a particular algorithm, determine how to
propagate the parameters of the perturbation process from the input to the parameters describing the perturbation
process of the computed output. The first basic case of this sort of uncertainty propagation is the propagation of
the covariance matrix of the input to the covariance matrix of the output. This is what this paper has described.

This work does not come near to solving what is requ:ired for the general problem, because the general problem
involves perturbations which are not additive. That is, in mid and high-level vision, the appropriate kinds of
perturbations are perturbations of structures. Now, we are in the process of understanding some of the issues with
these kinds of perturbations and expect to soon have some results in this area.
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