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Abstract. Fluorescence imaging has been shown to be a potential
complement to visual inspection for demarcation of basal cell carci-
noma (BCC), which is the most common type of skin cancer. Earlier
studies have shown promising results when combining autofluores-
cence with protoporphyrin IX (Pp IX) fluorescence, induced by appli-
cation of d-5-aminolaevulinic acid (ALA). In this work, we have tried
to further improve the ability of this technique to discriminate be-
tween areas of tumor and normal skin by implementing texture analy-
sis and Fisher linear discrimination (FLD) on bispectral fluorescence
data of BCCs located on the face. Classification maps of the lesions
have been obtained from histopathologic mapping of the excised tu-
mors. The contrast feature obtained from co-occurrence matrices was
found to provide useful information, particularly for the ALA-induced
Pp IX fluorescence data. Moreover, the neighborhood average features
of both autofluorescence and Pp IX fluorescence were preferentially
included in the analysis. The algorithm was trained by using a training
set of images with good agreement with histopathology, which im-
proved the discriminability of the validation set. In addition, cross
validation of the training set showed good discriminability. Our results
imply that FLD and texture analysis are preferential for correlation
between bispectral fluorescence images and the histopathologic ex-
tension of the tumors. © 2005 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1925650]
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1 Introduction
Fluorescence imaging has been of increasing interest for it
application in cancer detection in recent years.1–6 The main
advantage of the technique is that it is noninvasive and rela
tively fast, which is clearly favorable for clinical use. The
occurrence of skin cancer is increasing worldwide, and it ha
been reported that the most common malignancy in the Cau
casian population is basal cell carcinoma~BCC!.7 Early de-
tection and delineation of the tumor border are often difficult,
since the tumors may be irregular or invisible to the naked
eye, leading to incomplete removal and high recurrence risks
Therefore, fast and effective tools for diagnosis of BCC are in
great demand, and the fluorescence imaging technique h
become an interesting complement to visual demarcation.1–3

By applying d-5-aminolaevulinic acid~ALA ! to the skin,
the feedback control mechanism of the heme synthesis is by
passed, leading to accumulation of protoporphyrin IX~Pp
IX !.8 Due to enzymatic alterations9 and reduced penetration
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barrier of tumors,10 the formation of endogenous Pp IX, afte
application of ALA, has been found to be higher in tum
compared to normal tissue.8,11 Hence, ALA-induced Pp IX
can serve as a fluorescence marker for tumors. The elev
red Pp IX fluorescence seems to correlate with the tumor
tension of BCCs,1–3 although there have been studies prese
ing a lack of fluorescence selectivity.12

Tissue fluorescence without the application of an exter
fluorophore is called autofluorescence.13 Increased metabo
lism in the tumor region seems to be the key factor for ca
ing decreased green fluorescence in the tumor region w
excited in the UV region.14 It has been shown advantageous
combine the ALA-induced fluorescence with the autofluor
cence. For example, Svanberg et al. were able to visua
BCCs by taking the ratio between the Pp IX fluorescence
the autofluorescence signal.15 By this procedure, enhance
contrast between tumor tissue and normal skin was obtai

When developing new diagnostic tools, the real challen
is to test the ability of the techniques to demarcate tumors
comparing with the actual histopathologic extent of the
sions. In an earlier study from our group, the ALA-induce
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Ericson et al.: Bispectral fluorescence imaging . . .
fluorescence of BCCs was compared with the histopathologi
extent obtained from Mohs micrographic surgery.1 More re-
cently, we have extended the technique to include a multi
spectral imaging system assisted by image warping for align
ment of the acquired images.16,17 The results obtained were
promising although further analysis and improvement are
needed.

To our knowledge, the reports of fluorescence demarcatio
of BCC so far have been restricted to investigating only the
basic intensity feature of the data. By performing texture
analysis, additional data can be extracted from the image
This has been shown, for example, by Zhang et al. who per
formed a feasibility study of multispectral reflectance images
for classification of skin lesions.18 By calculating co-
occurrence matrices,19 second-order image statistics were ob-
tained.

Since texture analysis in combination with bispectral im-
ages will increase the number of parameters, reduction of th
dimensionality of data is needed. A classical technique fo
linear transformation of multidimensional data is the Fisher
linear discriminant~FLD!.20 The principle of FLD is to find
the linear combination of variables which maximizes the ratio
of its between-group variance to its within-group variance,
hence optimizing the discriminability.

In this work we have implemented texture analysis and
FLD on image data from bispectral fluorescence imaging o
aggressive infiltrating BCCs located in the face. The lesions
were imaged before and after ALA application, in two differ-
ent wavelength regions, recording both autofluorescence an
Pp IX fluorescence. The tumors were excised with Mohs mi-
crographic surgery to give a histopathologic map of each le
sion. The images as well as the histopathologic maps wer
aligned by using image warping. The ability of the technique
to discriminate between pixels corresponding to tumor and
normal pixels has been evaluated by comparing receiver op
eration characteristics~ROC! curves. Both cross-validation
and validation based on supervised training have been carrie
out.

2 Description of Fisher Linear Discriminant
The idea of FLD is to project theD3n dimensional data
matrix X onto a vector,a, so that the projected data,y
5aTX, are easier to classify. This is achieved by choosing the
transformation vectora so that the ratio of the between-
groups variance and the within-groups variance is maximized
The data matrix hasn number of observations andD dimen-
sions so thatXPRD3n. Each observationxj is a column ofX
and can be assigned to a certain groupGi . The mean value of
each group expressed with the transformed data develops t

m i5
1

ni
(

yj PGi

yj 5

yj 5aTxj 1

ni
(

xj PGi

aTxj5aTmi , ~1!

wheremi is the mean vector of the untransformed data. In the
case of two groups, the FLD is found by maximizing the ratio

J~a!5
um12m2u2

s1
21s2

2
5
~1!uaT~m12m2!u2

s1
21s2

2
, ~2!
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wheres i
2 is the variance of groupGi . For larger sets of data

it is suitable to write Eq.~2! in matrix form as

J~a!5
aTBa

aTWa
. ~3!

The group scatter matrix,B, is defined as

B5~m12m2!~m12m2!T, ~4!

andW is the total inner scatter matrixW5( Wi , whereWi is
the inner scatter matrix for each group:

Wi5 (
xj PGi

~xj2mi !~xj2mi !
T. ~5!

Taking the derivative ofJ, Eq. ~3!, with respect toa and
setting it to zero gives the generalized eigenvector prob
Ba5lWa(aTWaÞ0), with the solution

a5W21~m12m2!, ~6!

which is the resulting linear discriminant.

3 Methodology
3.1 Patients
Fifteen patients@six men, nine women, mean age 67 yea
~range 41–84!# with BCC on the face were included at th
Department of Dermatology, Sahlgrenska University Hos
tal, Göteborg, Sweden. The study was approved by the lo
ethics committee and conducted in compliance with the p
tocol and according to Good Clinical Practice. All patien
gave their informed consent before enrollment in the stu
Three patients were excluded from the analysis. In one pat
no tumor tissue was found during Mohs surgery. Additiona
two lesions located on the ear were excluded due to failure
image warping and problems in acquiring a complete his
pathologic mapping.

3.2 Bispectral Fluorescence Imaging
The bispectral imaging set up consisted of two mercury lam
for fluorescence excitation and a thermoelectrically coo
charged coupled device~CCD! camera~Photometrics SenSys
Roper Scientific Inc., Tucson, AZ, USA!. The two filter com-
binations used for imaging the autofluorescence and the P
fluorescence are presented in Table 1. The filter combinat
were chosen to match the absorption and emission peak
the autofluorescence14 and Pp IX fluorescence.1 The total in-
tensity of the excitation light was,0.5 mW/cm2 and the ex-

Table 1 Filter combinations and spectral distribution for bispectral
imaging.

Autofluorescence Pp IX fluorescence

Excitation BG23, UG1
(36565 nm)

BG23 [36565 nm (95%),
40563 nm (5%)]

Emission BG23, GG420
(470650 nm)

RG610 (610–700 nm)
-2 May/June 2005 d Vol. 10(3)
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Ericson et al.: Bispectral fluorescence imaging . . .
posure time of the camera was 2 s for both recordings. The
output raw data images were 5123512 pixels and 16-bit for-
mat, but were converted to 8-bit format after gray level
thresholding.

The area to be investigated included the BCC lesion an
approximately 2 cm of the surrounding normal skin. An ALA
cream~Crawford Pharmaceuticals Ltd, England! consisting of
20% ~w/w! ALA was applied for 3 h to obtain optimal Pp IX
contrast between tumor and normal skin.21 The lesion of in-
terest was marked with four spots in ink used as landmark
for image analysis. A background Pp IX image was obtained
before application of ALA. After the imaging procedure, the
area was covered with an occlusive dressing for 48 h, to mini
mize the risk of undesired phototoxic reactions.

3.3 Histopathologic Map
All BCCs were excised by Mohs micrographic surgery with-
out prior knowledge of the fluorescence results. The mea
delay between the time of fluorescence investigation and su
gical excision of tumor was 46 days628 ~mean6SD!. Since
BCCs are slow growing tumors, the changes in the tumor
occurring during this time period can be neglected.22 The ex-
cision site was inscribed with a black line in a reference im-
age before surgery. The excised tissue blocks were frozen an
re-embedded in paraffin. From these blocks, 4mm sections
were cut from the surface into the block at 3–4 levels. All
microscopically verified tumor tissue was mapped to a sepa
rate chart for each section. By adding the tumor areas for eac
section a final map of the lateral extent of the tumor was
obtained, without prior knowledge of the fluorescence images
The acquired histopathologic map was matched with the fluo
rescence images by using image warping, as will be describe
in the following. The precision of matching was estimated to
be 63 mm.

3.4 Image Warping
In order to match the different fluorescence images acquire
at different times, image warping was applied. The applied
algorithm was the affine transformation23 described as

u5a10x1a01y1a00,
~7!

v5b10x1b01y1b00,

wherex andy are the landmark coordinates of the input im-
age, which are transformed to the positionu, v in the output
image. The parametersa i j and b i j describe the transforma-
tion.

For aligning the fluorescence images, four landmarks in
each image were used. When aligning the histopathologi
map with the macroscopic excision, up to ten landmarks wer
used, manually selected along the excision border. The algo
rithm was implemented in Matlab®~The MathWorks, Inc.,
Natick, MA, USA!. The selected landmarks were inserted in
two landmark matrices,Y and X, resulting in an overdeter-
mined linear systemY5XP. The unknown parameter matrix
P was determined by finding the least-square solution, giving
the transformation parametersa i j andb i j . The desired trans-
formation was thereafter carried out using Matlab® Image
Processing Toolbox. A schematic picture of the image-
processing procedure is presented in Fig. 1.
034009Journal of Biomedical Optics
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3.5 Image Preprocessing
To minimize computational time a region of interest~ROI!
was selected. When choosing a ROI, care was taken to
clude disturbing edges, such as the border between A
treated skin and untreated skin. The pixel dimensions o
ROI varied between 753107 and 2273232 depending on the
lesion. The Pp IX images,P, were corrected by subtractin
the background Pp IX images,P0 , giving the corrected Pp IX
image,Pcorr.

3.6 Texture Analysis
The average neighborhood features,Aavg andPavg, were ob-
tained by convolving the autofluorescence image,A, and the
Pcorr image with an averaging filter of size 10310 pixels. The
averaging works as a low-pass filter suppressing noise in
image.

Texture description by using co-occurrence matrices
based on the repeated gray-level configuration in an im
window.19 The matrix is constructed by calculating the rel
tive frequenciesPf,d(a,b), which describe how frequently
pixel pairs with separationd in direction f and gray levels
(a,b), occur in a specified window centered around pix
( i , j ). For each image pixel, the contrast,Cf,d( i , j ), can be
calculated from the corresponding co-occurrence matrix a

Cf,d~ i , j !5(
a,b

ua2bu2Pf,d~a,b!. ~8!

By constructing the co-occurrence matrices for various dir
tions, f, but fixed distance,d, the total contrast can be ob
tained by summing:

Cd~ i , j !5(
f

Cf,d~ i , j !. ~9!

The contrast parameter gives a measure for the variability
the fluorescence, where areas with high contrast signal h
varying intensity.

Fig. 1 Schematic drawing of image analysis procedure.
-3 May/June 2005 d Vol. 10(3)
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Co-occurrence matrices were calculated for each pixel by
window of 21321. The number of gray-scale levels were re-
duced from 256 to 51 to decrease computational time. Th
distance vector,d, was set to 3 pixels, and the angles were 0°,
45°, and 90°. Subsequently the contrast imageC was derived
by calculating the contrast for all pixels.

3.7 Choice of Training Set
The fluorescence images were initially evaluated by calculat
ing Z images, obtained as

Z5
P2kP0

A
. ~10!

A similar procedure has been described earlier by Andersson
Engels et al.2 The parameterk was introduced to account for
intensity differences betweenP andP0 .

The Z images were compared with the histopathologic
mapping and the degree of correlation was rated. The rating
revealed good correlation in four patients, and seven patien
showed partial agreement. One patient showed deviating au
tofluorescence behavior, i.e., increased autofluorescence in t
tumor region. Hence this patient was excluded from analysis
The fluorescence images with good correlation betweenZ im-
age and histopathology were used as training set~labeled t1–
t4! for the FLD algorithm, and the seven with partial agree-
ment were used as validation set~labeled v1–v7!.

3.8 Implementation of Fisher Linear Discriminant
The data matrixX was constructed by vectorization of the
image data. For convenience the dimensions ofX were shifted
compared to earlier description of FLD so thatXPRn3D. The
ROI from each image was rescaled so that 10 000 pixels from
each image set were incorporated inX. The solution of the
Fisher function~6! was implemented according to a method
described by Ripley.24 The technique is based on singular
value decomposition~SVD! of the data. First, SVD was car-
ried out on the data matrix, givingX5U1L1V1

T . The data
were rescaled,Xrs5XS. Choosing

S5AnV1L1
21 ~11!

simplifies the within-group covariance matrix for the rescaled
variables so that it equals the identity matrix, i.e.,Xrs

TXrs

5nI.
The elements of the group matrix,G, indicate which group

each data point belongs to,Gi j 5d(@ i #, j ), where @i# is the
group of the data pointi. By this definition,GTG is diagonal.
The group means for the rescaled variables was calculated b
M5(GTG)21GXrs. The diagonal matrixT was constructed
by defining its elements asTj j 5An/nj , so that TTGTGT
5nI. By performing a second SVD on

T21M5ULVT, ~12!

one obtains

M5TULVT. ~13!

Hence, the group scatter matrix takes the form
034009Journal of Biomedical Optics
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B5~GM!TGM 5
~13!

nVL2VT, ~14!

and the inner scatter matrix becomes

W5Xrs
TXrs2B 5

~14!

nV@ I 2L2#VT. ~15!

The Fisher function@Eq. ~2!# can now be expressed as

J~a!5
aTBa

aTWa
5

~b5VTa!

~14!,~15! bTL2b

bT@ I 2L2#b
5

( il i
2bi

2

( i~12l i
2!bi

2
,

~16!

which will be maximized if only b1 is nonzero. Sincea
5Vb, the best choice ofa will be in the direction of the first
column ofV, i.e.,v1 . So for the rescaled variables,Xrsv1 will
maximizeJ(a). Subsequently, the maximum ofJ(a) is found
for XSv1 . The resulting linear discriminant will be

aFLD5Sv1 , ~17!

whereS is obtained from the first SVD according to Eq.~11!
andV is from the second SVD; see Eq.~12!. By using other
columns ofV, more discriminants with decreasing order
discriminability can be obtained.

3.9 Validation
Cross validation~leave one out! was performed by using the
training set. Thereafter the complete training set was app
to train the algorithm and validate it with respect to the va
dation set. The discriminability was evaluated by ROC. RO
curves are obtained by plotting the number of true positiv
~TP! against the number of false positives~FP!. For a given
discriminability the shape of the ROC curve will vary. Th
steeper the slope for low values of FPs, the better the disc
inability of the method.

4 Results
In this paper we have used FLD for discrimination of tum
pixels and pixels corresponding to normal skin in bispect
fluorescence images of BCCs located in the face. Tex
analysis has been implemented to increase the level of in
mation extracted from the images. It was found that the b
parameters to include in the algorithm were the neighborh
average of the autofluorescence,Aavg, and of the Pp IX fluo-
rescence,Pavg, as well as the contrast feature of th
background-corrected Pp IX image,CP .

Figure 2 shows the scatter plots~a–c! of the in-going fea-
tures of the training set and the projection on first and sec
Fisher vectors,aFLD,1 andaFLD,2 , obtained from the training
set. The histograms forAavg, Pavg, and the projection on
aFLD,1 , are also included in Figs. 2~d!–2~f!. As can be seen
from the scatter plots, the separation between the two dif
ent data groups is improved after projection on the FLD. T
is especially true for the projection on the first discrimina
As expected, the tumor pixels tend to be located towa
lower Aavg values@Fig. 2~d!# and higherPavg @Fig. 2~e!#. In
the histogram for the projected data, Fig. 2~f!, the separation
between the tumor and normal groups is improved.

Figure 3 shows the resulting FLDs during cross validatio
As expected, thePavg images have a positive correlation wit
-4 May/June 2005 d Vol. 10(3)
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Fig. 2 (a)–(c) Scatterplots of data from the training set. Pavg and Aavg are the neighborhood averages of Pp IX fluorescence and autofluorescence,
respectively. CP is the Pp IX fluorescence contrast. aFLD,1 and aFLD,2 are the first and second linear discriminants. Pixels corresponding to normal
skin are denoted by n, and tumor pixels are denoted by * . Histograms for the data projected on Aavg , Pavg , and aFLD,1 are shown in (d)–(f). Black
bars belong to tumor class and gray bars represent the normal class.
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tumor, whereas the correlation withAavg images are negative.
In addition, the contrast image,CP , shows positive correla-
tion. The ROC curves for the cross validation are shown in
Fig. 4. As can be seen, the discriminability is particularly
good for t2, and t3, reaching a high degree of TP and low
values of FP. The deviation from the line of chance~LoC! was
large for all cases.

As a second evaluation, the algorithm was trained by using
the complete training set~t1–t4! and validated using the vali-
dation set~v1–v7!. The overall result including the complete
validation set is shown in Fig. 5. Included in the figure are the
ROC curves for the basic featuresP andA. In addition, theZ
034009Journal of Biomedical Optics
feature, calculated as the ratio betweenP andA, is presented.
As shown in Fig. 5, the ROC curves forP are actually below
LoC. TheZ feature shows some discriminability up to 20%
TP, which thereafter drops off. TheA curve is the only curve
of the simple features that shows some discriminability in
whole range. By performing FLD transformation in combin
tion with texture analysis, the ROC curve is improved for t
validation set.

Figure 6 shows photographs of two morpheiform BCC
~a! t3 included in the training set and~b! v5 from the valida-
tion set. The fluorescence, texture and projection images
each lesion are presented in Figs. 7 and 8, respectively
shown, there is an elevated Pp IX fluorescence~a! and de-
Fig. 3 Resulting linear discriminant, aFLD , when performing cross
validation of training set. Aavg and Pavg are the neighborhood averages
of autofluorescence and Pp IX fluorescence respectively. CP is the
texture contrast of Pp IX fluorescence.
Fig. 4 Cross-validation ROC analysis, i.e., true positives (TP) against
false positives (FP). The different image series are labeled t1–t4. In-
cluded is also the line of chance (LoC).
-5 May/June 2005 d Vol. 10(3)
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Fig. 5 ROC analysis of validation set, i.e., true positives (TP) against
false positives (FP). The different lines represent different methods.
Linear discrimination combined with texture analysis (FLD), Pp IX im-
age only (P), autofluorescence only (A), and Z analysis (Z). Included is
also the line of chance (LoC).
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creased autofluorescence~b! in the tumor area. In the neigh-
borhood average images~c,d!, this behavior is more pro-
nounced suppressing noise. However, in Fig. 8~c!, there is an
area outside the tumor which shows rather high Pp IX fluo-
rescence. Interestingly, this area is not detected in the contra
image~e!, implying that the fluorescence texture is homoge-
neous in this area. In the tumor, however, the fluorescenc
seems to be highly varying, which generally gives a strong
signal in contrast image. In the resulting projection images~f!,
the agreement with the tumor border is shown.

5 Discussion
The demand for effective tools for diagnosis and demarcatio
of skin cancer is increasing, particularly for BCC which is the
most common skin malignancy.7 Fluorescence imaging using
ALA-induced Pp IX as fluorescent marker, has shown a po
tential use for demarcation and delineating these types o
tumors.1–3 However, there are studies reporting on lack of
selectivity of the Pp IX fluorescence.12 It has proved to be
preferential to combine the ALA-induced fluorescence with
the autofluorescence.15 By taking the ratio between the two
different fluorescence signals, increased contrast has been o
tained. Still, the question remains of how to demarcate be
tween tumor tissue and normal skin.

In order to investigate the correlation between bispectra
fluorescence images and the histopathologic extent of the tu
mor, some sort of matching technique is needed to be able t
align the fluorescence data with the histology map. This can
be obtained by performing image warping.23 We have earlier
presented a comparison betweenZ images, i.e., the ratio be-
tween Pp IX fluorescence and autofluorescence, and the hi
tologic extent of BCCs.17 In the present study we have inves-
tigated the possibility of using FLD in combination with
texture analysis for improving and evaluating the discrim-
inability of the technique. A training set of four cases with
good agreement in the earlier study was implemented, an
seven image series with partial agreement were used as t
validation set. Both cross validation and evaluation using the
validation set were carried out.
034009Journal of Biomedical Optics
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It was shown that the discriminability based on the RO
curves from the cross validation of the training set was go
In addition, the training of the implemented algorithm w
found to significantly improve the discriminability of the val
dation set compared to the simple features. Interestingly,
autofluorescence alone was found to be the best basic fe
to discriminate the pixels from the ROC analysis. Surpr
ingly, the P feature displayed a lack of discriminability. Thi
shows that the Pp IX fluorescence alone is insufficient
tumor demarcation of some lesions. Despite this, the Pp
fluorescence provides useful information when perform
texture analysis, since the contrast feature increases the
criminability significantly.

In texture analysis, there is a huge variety of parame
which can be calculated; however, depending on the ta
only a few of these will contain useful information. In th
study we have tested parameters calculated from
occurrence matrices19 extracted from the different fluores
cence images, in addition to neighborhood averaging. It w
found that the contrast parameter and the neighborhood a
age contained useful data to discriminate between tumor
normal pixels. Hence, only these parameters were imp
mented in the discrimination algorithm.

It is important to try to understand the physical meanin
of the actual texture parameters in order to eliminate the
of implementing unrealistic parameters. For this purpose,
neighborhood average is possibly correlated with the fact
pixels classified as tumor are most likely to be surrounded
other tumor pixels. Sporadic fluorescence changes will
suppressed. The contrast parameter, on the other hand, gi
measure for the variability of the fluorescence in a cert
area. Areas with varying intensity information will give a hig
contrast signal, whereas areas with homogeneous fluoresc
are extinguished. This is of great importance in the case
ALA-induced fluorescence. It seems that the ALA-induc
fluorescence is rather inhomogeneous in the tumor area,
ing a high contrast signal. Moreover, artifacts due to unev
ALA distribution, causing elevated Pp IX levels without co
respondence to tumor, will be suppressed since these a
show a different pattern compared to tumor areas. It w
found that only the contrast parameter for the Pp IX fluor
cence contained useful information. Hence, only the Pp
contrast feature was included in the discriminant analysis

When implementing FLD analysis, the choice of trainin
set is of great importance. In this study we used image d
whose fluorescence ratio earlier showed good agreement
the histopathologic map, as the training set. By doing so,
forced the algorithm to find a linear discriminant represen
tive for these data. Still, the derived discriminant was able
improve the discriminability of the validation set, whic
showed only partial agreement using the fluorescence r
alone. It is possible that even better discrimination can
obtained by being able to subdivide the lesions into differ
groups, using different discriminants. For example, we ha
observed a lesion with increased autofluorescence in the
mor area which was excluded here because of its deviant
havior. This type of analysis requires a much larger corpus
patient material, and is therefore subject to future work.

As shown by this study, the contrast parameter obtai
from co-occurrence matrices of the Pp IX images provid
useful information for discrimination between tumor and no
-6 May/June 2005 d Vol. 10(3)
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Fig. 6 Photography of two lesions. Morpheiform BCC located (a) under right eye, included in training set, t3 and (b) at forehead, included in
validation set, v5. The black rectangle indicates the ROI, for which fluorescence data have been obtained (see Figs. 7 and 8).

Fig. 7 Fluorescence images of ROI of lesion t3 [Fig. 6(a)]. (a) The
corrected Pp IX fluorescence, Pcorr , (b) the autofluorescence image, A,
(c) the average image of Pcorr , Pavg ; (d) shows the average image of A,
Aavg , (e) is the calculated contrast image from Pcorr , CP , and (f)
shows the final projection image, aFLD . Delay between fluorescence
investigation and surgery was 33 days.

Fig. 8 Fluorescence images of ROI of lesion v5 [Fig. 6(b)]. (a) The
corrected Pp IX fluorescence, Pcorr , (b) the autofluorescence image, A,
(c) the average image of Pcorr , Pavg ; (d) shows the average image of A,
Aavg , (e) is the calculated contrast image from Pcorr , CP , and (f)
034009Journal of Biomedical Optics
shows the final projection image, aFLD . Delay between fluorescence
investigation and surgery was 53 days.
-7 May/June 2005 d Vol. 10(3)
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mal areas. A major drawback associated with this paramete
however, is that of edge effects. Since the contrast is high i
areas with a high degree of fluorescence variation, edges wi
give a strong signal. For example, the border between th
ALA-treated area and the non-ALA-treated surrounding skin
may cause a false signal. This can be observed in Fig. 7~e!, in
the lower left-hand corner. For this reason, it is of great im-
portance to be able to obtain a ROI without edges in order to
be able to use this texture feature.

Another problem noted in this study is the disturbing effect
of hair in the autofluorescence images. It is likely that the
keratin in hair causes the disturbance. This problem occurs
the lesion is located on the scalp or in the close vicinity of the
hairline. It appears that shaving is not sufficient to eliminate
the unwanted fluorescence completely. Since many tumor
have this location, it is desirable to find techniques minimiz-
ing this problem.

In conclusion, we have investigated the possibility of im-
proving the ability to discriminate tumor areas from normal
skin in fluorescence images of BCCs, by implementing tex-
ture analysis in combination with FLD. Classification maps of
the lesions have been obtained from histopathologic mappin
of the excised tumors. Even though the study was based on
limited data set, it was found that the contrast parameter ob
tained from co-occurrence matrices of the ALA-induced Pp
IX fluorescence, together with the neighborhood average o
autofluorescence and Pp IX fluorescence, provides useful in
formation for the discrimination task. By training the algo-
rithm, using a training set of images with good agreemen
with histopathology, the discriminability of images with only
partial agreement was improved. These results imply tha
when applying bispectral fluorescence imaging for demarca
tion of skin lesions, FLD and texture analysis are preferentia
for obtaining correlation between images and the histopatho
logic extent of the tumors. Nonetheless, further studies ar
needed to make the technique robust as a diagnostic tool.
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