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Introduction

n many scientific applications, images are often corrupted
y noise because of either data acquisition or data transmis-
ion. Therefore, the problem of recovering an original im-
ge from noisy data has received ever-increasing attention
n recent years, but it is still very challenging.1 It has been
opular to denoise an image by Markov random field
MRF�-based methods. Recently, a new fields of experts
FoE�-based approach2 was introduced that considered
igh-order MRF cliques to grasp the complex structural
nformation in image data and utilized a maximum-a-
osteriori �MAP� framework to get the clean image. It is
ne of the most promising methods in generic MRF-based
mage denoising approaches.3

The typical objective in denoising problems is a recov-
ry of an image with minimal mean-squared error �MSE�.
owever, in practice, we do not have the original image to

ompare to, and thus we cannot know what choice of pa-
ameters minimizes the MSE. Therefore, the parameters are
ften tuned manually by looking at the reconstructed result.

In FoE image denoising algorithms, the tradeoff param-
ter and stopping criterion must be specified before itera-
ion. However, tuning of the parameters is not an easy task.
ssuming that the noise level is known a priori, Roth and
lack adopted a fixed number of iterations and experien-

ially determined the appropriate tradeoff parameter be-
ween the likelihood term and the FoE prior term using a
omplicate training procedure. But in real image denoising,
ccurate noise variance estimation is unavailable, even

091-3286/2010/$25.00 © 2010 SPIE
ptical Engineering 060504-
though there are many types of noise variance estimate
algorithms.4

In this work, we have developed an automatic blind
method in FoE real image denoising, which can take effect
without accurate noise variance estimation and automati-
cally terminate at a good result.

2 Brief Review of Field of Experts Image
Denoising

The basic problem of image denoising is the recovery of a
latent clear image X from an observed noisy image Y :Y
=HX+N, where N represents additive noise, assumed to be
white Gaussian noise �WGN� with zero mean and known
standard deviation �. Using MAP rules to estimate the clear

image X, we can maximize the posterior probability X̂MAP
=Arg max

X

P�X �Y�=Arg max
X

P�Y �X�P�X�, in which the

conditional possibility is

P�Y�X� � �
k

exp�−
1

2�2 �yk − xk�2� , �1�

where k ranges over the pixels in the image. Modeling im-
age X as a MRF, and according to the Hammersley-Clifford
theorem, we can write the probability density of this
graphical model as a Gibbs distribution,

P�X� =
1

Z�X�
exp�− �

k

Vk�X�k��� ,

where Vk�X�k�	 is the potential function for clique X�k�, and
Z�X� is the normalized constant, called the partition func-
tion. In the FoE framework, the probability density of im-
age P�X� can be written as,

PFoE�X� =
1

Z����k
�
i=1

N

�i�Ji
TX�k�;ai� .

From Eq. �1�, the gradient of the log-likelihood is written as
�x log p�Y �X�= �Y −X� /�2, and the gradient of the log-prior
is

�X log p�X� = �
i=1

N

J�i�− � �i�J�i� � X	 . �2�

J�i��X denotes the convolution of image X with filter J�i�;
�i�Y� is the log differential of experts, that is, �i�Y�
=� log �i�Y ;ai� /�Y; J�i�− denotes the filter obtained by
mirroring J�i� around its center pixel; �i obeys the function
form of the Student t-distribution as in Ref. 2. By introduc-
ing an iteration index t, an update rate �, and an optional
weight �, we can write the gradient descent algorithm as:

X�t+1� = X�t� + �
�
i=1

N

J�i�− � �i�J�i� � X�t�	 +
�

�2 · �Y − X�t��� .

�3�

It could be seen that the denoised image can be obtained by
gradient descent optimization in the FoE image denoising
method �Roth-FoE�. More details can be found in Ref. 2.
June 2010/Vol. 49�6�1
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Parameter Selection in Roth/Field-of-Experts

n Roth-FoE, two important parameters, the tradeoff pa-
ameter � and stopping criterion, have an important impact
n the final image quality and its computational complex-
ty, so they must be specified before iteration begins. How-
ver, tuning of the parameters is not an easy task. In com-
uter vision tasks, two stopping criteria were widely used: a
xed number of iterations or a predefined threshold, which

he difference between adjacent iterations becoming
maller. However, these two strategies both have to choose
he threshold or the number of iterations by experience, so
hey cannot be done completely automatically for all im-
ges.

Assuming a known noise distribution in synthetic image
enoising, Roth experimentally determined the appropriate

using a complicated training procedure with synthetic
ata and specified a fixed number of iterations. The Roth-
oE can generate satisfied results in the synthetic experi-
ent with known noise variance.
We simulated noisy data by adding WGN to the same

est image Castle from the Berkeley segmentation dataset,
s in Roth’s work. The true noise level we added was �
15, and the noise levels while using Roth-FoE are four
ifferent hypotheses with �̂� �10,15,30,75
. Other param-
ters were selected as recommended in Ref. 2. The peak
ignal-to-noise ratio �PSNR� curves of four experiences
ith 5000 iterations are given in Fig. 1. It shows that the
oise variance estimation is vital in the performance of the
nal results using the stopping criterion for fixed numbers
f iterations. However, if we can find an effective auto-
atic stopping criterion to stop the algorithm at optimal

imes, such as using �̂� �30,75
, we can get the satisfied
esults, or even better than the results by using the perfect
oise variance estimation with �̂=15. Unfortunately, in real
mage denoising, there is no ground truth and the accurate
oise variance is unavailable, even though there are many
ypes of noise variance estimate algorithms.4 So the Roth-
oE is restricted to simulated experiments, and cannot be
irectly applied to real image denoising applications.

ig. 1 Denoising performance of noisy image ��=15� using the 5
5 FoE models with varying noise level ��̂� �10,15,30,75
� shown

n terms of PSNR.
ptical Engineering 060504-
4 Automatic Stopping Criterion

According to Eq. �3�, Roth-FoE can be understood as a
regularization algorithm in inverse problems, and � /�2 can
be considered as the regularization factor to balance the
impact between the two terms: a data fidelity term that
measures the likelihood of the input image given the out-
put, and a prior term that encodes prior assumptions about
the output. In this work, motivated by Fig. 1, we considered
the parameter � /�2 as fixed and adopted a no-reference
image quality assessment based on singular value decom-
position �SVD� to design an optimal automatic stopping
criterion for FoE-based image denoising.

Considering an n�n window 	k at point �i , j� of image
X, the gradient matrix is defined as

G = � ] ]

gi�k� gj�k�
] ]

�, k � 	k,

where �gi�k� ,gj�k�	T denotes the gradient of the image at
point �i , j�. Computing the SVD of G and assuming s1


s2
0, it can be obtained that

G = USVT = U�s1 0

0 s2
��v1 v2	T.

The singular values s1 and s2 represent the energy in the
directions v1 and v2, respectively, and they reflect the
strength of the gradients along the dominant direction and
its perpendicular direction. Image patches can be classified
into four types of idealized patches: flat, linear, quadratic,
and edged regions. Define the image content metric of im-
age patch 	k as

Qk = s1 ·
s1 − s2

s1 + s2
.

Zhu and Milanfar5,6 demonstrated that for anisotropic
patches �s1�s2�, including the linear, anisotropic quadratic,
and edged regions, the proposed metric Qk is able to detect
both blur and random noise. So in practice, when measur-
ing the true content of an image as a whole, we can calcu-
late Q in all anisotropic areas as

Q =
1

K
�

k

Qk. �4�

We distinguish between isotropic and anisotropic areas by
employing significance testing6 based on local coherence
R= �s1−s2� / �s1+s2�. In our experiments, we set the signifi-
cance level to be 0.001, and use it to determine image patch
labels. In the iteration, Q is computed every time as a sign
of whether to stop the iteration to get the optimal results.
The FoE denoising method with automatic stopping crite-
rion �ASC-FoE� can be described as follows.

1. Initialization: set � /�2=0.001, �=0.1, and the initial
iteration value X�0�=Y. Compute its image quality
measurement Q�0� according to Eq. �4�. Set Qmax
=Q�0� and optimal iteration time I =0.
opt

June 2010/Vol. 49�6�2
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2. Iteration: update X�t+1� and corresponding Q�t+1� from
Eqs. �3� and �4�. If Q�t+1��Qmax, let Qmax=Q�t+1�,
Iopt= t+1.

3. Stopping criterion: if Q�t+1+n��Qmax, for n=1, . . . ,N,
the iteration terminates, and let X�t+1� be the denoised
image.

Experimental Results

e design an experimental scheme to illustrate the image
uality performance of the proposed method on both syn-
hetic and real images. For the synthetic data, we simulated
oisy data by adding WGN ��=30� to the test image
astle. We denoised it by Roth-FoE and the proposed ASC-
oE under seven different noise-level hypotheses with �̂
�25,30,35,40,50,75,100
. We used the 5�5 FoE
odel with 24 filters, and other parameters were selected as

ecommend in Ref. 2. Table 1 shows the performance com-
arison in terms of PSNR and structural similarity �SSIM�
ndex as measured between the denoised image and the
round truth. Also, the iteration numbers are given out. It
an be seen that the ASC-FoE outperforms the Roth-FoE
nd has less computational cost. It should be noted that, for
air comparison of the two methods in the synthetic ASC-
oE experiment, we used six different noise level hypoth-
ses the same as the Roth-FoE instead of setting � /�2

0.001, as described in ASC-FoE. In addition, using
/�2=0.001 is almost equal to using �̂=75, and the result

s also satisfied.
For the real noise image, the experimental results are

hown in Fig. 2. We use the test image JFK �367�343�7

hat suffers from the real noise shown in Fig. 2�a�. The
oise comes from film grain, scanning, and compression
rocesses, and may not be pure Gaussian—indeed, it may
e space variant. We estimated the standard deviation of the
oise through the commonly used median absolute devia-
ion �MAD� method for Roth-FoE. The measured value is
=4.2. The results of Roth-FoE and ASC-FoE are shown

n Figs. 2�b� and 2�c�, respectively. It can be seen that the

able 1 PSNR, SSIM, and iteration number for Roth-FoE and
SC-FoE.

�̂

PSNR �dB� SSIM Iteration Number

ASC-FoE Roth-FoE ASC-FoE Roth-FoE
ASC-
FoE

Roth-
FoE

25 23.2245 23.2254 0.5088 0.5089 4999 5000

30 26.8926 26.8926 0.8041 0.8041 5000 5000

35 27.6546 27.6546 0.8047 0.8047 5000 5000

40 27.7328 27.6133 0.8050 0.7916 4290 5000

50 27.7814 27.1281 0.8047 0.7916 3704 5000

75 27.7977 26.3426 0.8067 0.7455 3163 5000

00 27.7933 26.0431 0.8066 0.7364 3043 5000
ptical Engineering 060504-
ASC-FoE outperforms the Roth-FoE in noise-suppressing
capability, and obtains a more pleasant result. Moreover,
the Roth-FoE requires 5000 iterations according to recom-
mended parameter settings, while in this experiment we
terminated the ASC-FoE at iteration 208 when the image
quality achieved the best. Therefore, the iteration time re-
duction of ASC-FoE scores around 96% and would result
in a speedup factor of more than 24.

6 Conclusion

For real image denoising applications, we develop an auto-
matic stopping criterion in FoE image denoising. We dem-
onstrate that our ASC-FoE can obtain a faster and more
pleasant result than the original Roth-FoE without the ex-
plicit need to know the noise variance a priori.
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