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Abstract. We present an approach to adaptively adjust the spectral
window sizes for optical spectra feature extraction. Previous studies
extracted features from spectral windows of a fixed width. In our al-
gorithm, piecewise linear regression is used to adaptively adjust the
window sizes to find the maximum window size with reasonable lin-
ear fit with the spectrum. This adaptive windowing technique ensures
the signal linearity in defined windows; hence, the adaptive window-
ing technique retains more diagnostic information while using fewer
windows. This method was tested on a data set of diffuse reflectance
spectra of oral mucosa lesions. Eight features were extracted from
each window. We performed classifications using linear discriminant
analysis with cross-validation. Using windowing techniques results in
better classification performance than not using windowing. The area
under the receiver-operating-characteristics curve for windowing
techniques was greater than a nonwindowing technique for both nor-
mal versus mild dysplasia �MD� plus severe high-grade dysplasia or
carcinama �SD� �MD+SD� and benign versus MD+SD. Although
adaptive and fixed-size windowing perform similarly, adaptive win-
dowing utilizes significantly fewer windows than fixed-size windows
�number of windows per spectrum: 8 versus 16�. Because adaptive
windows retain most diagnostic information while reducing the num-
ber of windows needed for feature extraction, our results suggest that
it isolates unique diagnostic features in optical spectra. © 2010 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3481143�
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extraction; data compression; optical spectroscopy; computer-aided diagnosis; ROC
analysis.
Paper 10203PR received Apr. 18, 2010; revised manuscript received Jun. 26, 2010;
accepted for publication Jul. 1, 2010; published online Aug. 20, 2010.
Introduction

ancer is a major health problem throughout the world.1 Early
iagnosis of precancerous neoplasia has been shown to reduce
ortality dramatically. Thus, there is a pressing need for ac-

urate and low-cost screening and diagnostic techniques to
dentify curable precancerous sites. Epithelial precancers are
haracterized by a variety of architectural and morphological
eatures, including increased nuclear size, increased nuclear-
ytoplasmic ratio, hyperchromasia, and pleomorphism. Cur-
ently, the architectural and morphological changes related to
arcinogenesis are assessed by biopsy, which is invasive.
oreover, biopsy is not able to monitor real-time dynamic

hanges associated with the disease, which are important for
ssessing treatment response. In contrast, several studies have
hown that optical technologies hold great promise for nonin-
asive and real-time assessment of precancers.2–14 This study
oncerns diffuse reflectance spectroscopy for epithelial cancer
iagnosis. Reflectance spectroscopy captures optical scatter-

ddress all correspondence to: Mia K. Markey, The University of Texas Depart-
ent of Biomedical Engineering, 1 University Station, Austin, Texas 78712-
084. Tel: 512-471-1711; Fax: 512-471-0616. E-mail:
ia.markey@mail.utexas.edu
ournal of Biomedical Optics 047012-
ing and absorption of epithelial tissue, which are altered when
precancerous abnormalities exist. Although optical spectros-
copy has been demonstrated to capture properties that are, on
average, different between normal and cancerous tissues,
variation in the spectral response between patients makes ac-
curate diagnoses difficult to achieve. Therefore, clinicians will
need decision support tools to help them predict cancer status
from optical spectroscopy with acceptable sensitivity and
specificity.

Spectral feature extraction and selection are critical in de-
signing clinical decision support systems. There are four ma-
jor categories of feature extraction methods in spectral signal
processing: principal component analysis �PCA�, model-based
feature extraction, spectral feature extraction, and hybrid fea-
ture extraction.15 Quantitative features are extracted from op-
tical spectra to describe different spectral patterns, while fea-
ture selection aids in the identification of those optically
derived features that are diagnostically relevant and the elimi-
nation of redundant features that are strongly related to se-
lected features. Minimizing the number of features is impor-
tant to reduce computation complexity, processing time, and

1083-3668/2010/15�4�/047012/12/$25.00 © 2010 SPIE
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o prevent overtraining. PCA is a linear transformation tech-
ique for reducing the dimensionality of data. Spectral feature
xtraction describes spectral signatures without prior knowl-
dge of the tissue’s physical nature, while model-based ex-
raction requires prior knowledge of the tissue’s properties.

ost previous studies processed spectroscopy signals by em-
loying spectral intensity signals directly as extracted fea-
ures, and performed PCA for feature reduction �e.g., Refs. 5,
0, and 16–20�, but some use model-based features �e.g.,
efs. 13 and 21–28�. The second category of feature extrac-

ion methods is model-based feature extraction. Model-based
ethods analyze the wavelength or angle-dependence optical

ignals to determine physical properties of cells and
issues.12,14,29 These properties are generally believed to relate
o disease status; hence, they can be indications of disease.
he current trend leans more toward model-based feature ex-

raction and hybrid feature extraction. Hybrid feature extrac-
ion, the fourth category of feature extraction methods, is a

ixture of statistical features and model-based features.29,30

hese approaches utilize model-based preprocessing of spec-
ra, based on underlying biology to extract input parameters,
nd analyze these parameters with statistical methods.

The method we utilize is a variation on statistical feature
xtraction, which is a more heuristic approach to find the
orrelation between statistics from spectroscopy and known
athology status. In prior studies, spectral features of optical
pectroscopy were extracted from the entire spectrum; how-
ver, that may not be optimal. Some groups investigated di-
iding the entire spectrum into smaller spectral regions for
eature extraction. When extracting features from a spectral
egion, how large should the spectral region be? Take the
aximum intensity feature, for example. Should we use glo-

al maximum of the entire spectrum? Or is a local maximum
ore meaningful? It is widely accepted that some wave-

engths may be more discriminatory than others7,31,32 because
ight of different wavelengths behaves differently when inter-
cting with tissues. Features extracted from spectral regions
elp us understand the underlying morphology and optical
roperties of the tissue. Undoubtedly, the choice of a spectral
egion for feature extraction makes a difference in the perfor-
ance of the extracted features.7,31,32

A study by Bigio et al. employed spectral features ex-
racted by dividing the spectra into several spectral windows
f a fixed width of 20 nm.5 In addition to the average inten-
ities of spectral windows, slopes of these spectral windows
ere also extracted as features because it was discovered that
road �large-spectral-range� slope changes were observed for
alignant conditions due to enlarged and denser nuclei.5

ourant et al.’s study on spectroscopic diagnosis of bladder
ancer with elastic light scattering31 used a similar method of
ividing the spectrum into smaller spectral bands �20 nm�
nd searching for the most discriminatory one. However, the
hoice of spectral window size was arbitrary in both of these
rior studies.

In this study, we present an approach for adaptively adjust-
ng the spectral window sizes for feature extraction from op-
ical spectra. This approach uses simple linear regression to

ake a piecewise model of the measured optical spectra. Fea-
ures such as average intensity and the slope and intercept of
he piecewise linear regression were investigated. By adap-
ively adjusting the spectral window sizes, the trends in the
ournal of Biomedical Optics 047012-
data are captured more succinctly than when a small fixed
window size is used. In other words, this method reduces the
feature redundancies that exist when fixed-size windows are
used for feature extraction. The results of this study show that
windowing techniques have better diagnostic performance
than no windowing. Also, adaptive windowing have similar
diagnostic power to fixed-size windowing; however, adaptive
windows require significantly less windows than fixed-size
windows. This shows that adaptive windowing technique pre-
serves the information needed for diagnosis with fewer win-
dows used. The main contribution of this adaptive window
approach is in statistical feature extraction. In addition, when
choosing what features to use, adaptive windowing is most
appropriate when the statistical features have linear relation-
ships across windows, as theoretically illustrated in Sec. 2.

2 Theoretical Derivation
Within every spectral window, eight spectral features are ex-
tracted to describe the signal �Table 1�. In this section, we
derive how adaptive windows can reduce the redundancies
from fixed-size windows. In particular, we use an example
where the adaptive window is exactly twice the size of a
fixed-size window �see Fig. 1�; a proof under general condi-
tions is not applicable because adaptive windows are variable
across spectra and can start and end anywhere. In Fig. 1, we
can see an illustration of adaptive and fixed-size windows.
The dashed line is the real spectrum, and solid line is the fitted
line. Windows 1 and 2 are fixed-size windows while window
3 is the adaptive window. For theoretical explanations, we
assume that the dashed line �measured signal� can be repre-
sented using the fitted line �solid line�.

Table 1 lists the features that we explored. Column 2 ref-
erences other researchers that have used the given feature for
diagnostic purposes. The eight features are defined as follows:
Features 1 and 2 are the slope and intercept extracted from
performing linear regression within each spectral window,
which remain the same between smaller fixed window sizes

Table 1 Eight spectral features were employed in this study. These
local features were extracted in each spectral window.

Feature

Proposed byNo. Name

1 Slope from linear regression Bigio et al.,5 Mourant et al.31

2 Intercept from linear regression Mueller et al.12

3 Minimum intensity New

4 Average intensity Bigio et al.,5 Mourant et al.31

5 Median intensity New

6 Maximum intensity New

7 Standard deviation of the
intensities

Kamath and Mahato19

8 Signal energy of the intensities Kamath and Mahato19
July/August 2010 � Vol. 15�4�2
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nd larger windows for a linear signal within the window.
eatures 3–6 are, respectively, minimum, average, medium,
nd maximum intensities. These are intensities within the
indow and can vary with different window sizes. However,

he variation is linearly proportional. For example, in Fig. 1,
eature 3, the minimal intensity, extracted from windows 1
nd 2 differs only by an offset value. Therefore, there is a
inear relationship in feature 3 extracted from fixed-size win-
ows �windows 1 and 2� and adaptive windows �window 3�.
ikewise, the values of features 4–6 for fixed-size windows

windows 1 and 2� and adaptive windows �window 3� are
inearly proportional. Feature 7 is the standard deviation of
he intensities in the window. The standard deviation in win-
ows 1 and 2 can be written as

�1 =��i=1
N/2�I�i� − I1�2

N/2
, �1�

�2 =��i=N/2+1
N �I�i� − I2�2

N/2
, �2�

here I�i� is the intensity at the i’th wavelength point and N
s the number of points in the window. The mean intensity is
iven by

I1 =
�i=1

N/2I�i�
N/2

, and I2 =
�i=N/2+1

N I�i�
N/2

. �3�

n window 3, the standard deviation can be written as

� =��i=1
N �I�i� − I3�2

, �4�

ig. 1 Illustration of an adaptive window and two fixed windows. The
ashed line is the real spectrum, and the straight line is the fitted line.
indows 1 and 2 are fixed-sized windows while window 3 is the

daptive window.
3 N

ournal of Biomedical Optics 047012-
�3
2 =

1

N��
i=1

N/2

�I�i� − I3�2 + �
i=N/2+1

N

�I�i� − I3�2� , �5�

�3
2 =

1

N��
i=1

N/2

�I2�i� − 2I�i�I3 + I3
2�

+ �
i=N/2+1

N

�I2�i� − 2I�i�I3 + I3
2�� , �6�

�3
2 =

1

N��
i=1

N/2

I2�i� + �
i=N/2+1

N

I2�i�� − 2I3I3 + I3
2, �7�

�3
2 =

1

N��
i=1

N/2

I2�i� + �
i=N/2+1

N

I2�i�� − I3
2. �8�

We rewrite Eq. �1� as

�1
2 =

1

N/2��
i=1

N/2

I2�i� − 2I1�
i=1

N/2

I�i� +
N

2
I1

2� , �9�

�1
2 =

�i=1
N/2I2�i�
N/2

− I1
2. �10�

Thus, equating Eq. �10� ,

�i=1
N/2I2�i�

N
=

�1
2 + I1

2

2
. �11�

Substituting Eq. �8� with Eq. �11�, we get

�3
2 =

�1
2 + I1

2

2
+

�2
2 + I2

2

2
− I3

2. �12�

Because �1=�2, we get

�3
2 = �1

2 + 1
4 �I1 + I2�2. �13�

Therefore, from Eq. �12�, we can conclude that feature 7 has
a linear relationship between adaptive windows and fixed-size
windows.

Feature 8, signal energy, is defined as

SE = �
i=1

N

I2�i� , �14�

where N is the number of spectral points inside the spectral
window �i.e., the number of wavelengths� and I�i� is the in-
tensity at the i’th point in the spectral window.

This can be rewritten as

�
i=1

N

I2�i� = �
i=1

N/2

I2�i� + �
i=N/2

N

I2�i� , �15�

SE = SE + SE . �16�
3 1 2
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From the derivation above, we conclude that features ex-
racted from larger windows identified by the adaptive win-
owing technique are linearly related to features extracted
rom smaller, fixed-size windows. Thus, the adaptive window-
ng technique should enable the use of a smaller number of
indows, with little loss of diagnostic information.

Materials and Methods
.1 Overview
e compare three windowing techniques: �i� No windowing

s performed �i.e., features are extracted from all wavelengths
00–725 nm�, �ii� fixed window size of 20 nm �window size
dopted from Ref. 5�, and �iii� adaptive spectral window sizes
etermined by the novel algorithm presented in this paper.

.2 Data Collection
his analysis used a diffuse reflectance spectroscopy data set
btained in a previous investigation of oblique polarization
eflectance spectroscopy �OPRS� of oral mucosa lesions.30 In
his study, we used only the diffuse reflectance subset of the
PRS data set because diffuse reflectance spectroscopy is
ore commonly used than polarized reflectance spectroscopy.
oreover, the purpose of this study is to demonstrate the

ffectiveness of a new windowing method that can be used
ith a broad range of spectral data; thus, the selection of a
articular spectroscopy technique as an exemplar is arbitrary.

The data set was acquired at The University of Texas M.
. Anderson Cancer Center �UT MDACC� in Houston, Texas,

s previously described.30 Briefly, 27 patients over the age of
8 years were referred to the Head and Neck Clinic at UT
DACC with oral mucosa lesions suspicious for dysplasia or

arcinoma.30 Spectroscopic measurements were typically per-
ormed on one or two visually abnormal sites and one visually
ormal site. Biopsies were taken of all measured tissue sites.
e measured a total of 57 sites, of which 22 were visually

nd histopathologically normal �Normal�, 13 sites were visu-
lly abnormal but histopathologically normal �Benign�, 12
ere visually abnormal sites that proved to be mild dysplasia

MD� on histopathology, and 10 were visually abnormal sites
hat proved to be severe high-grade dysplasia or carcinoma
SD� on histopathology. The resulting data set consisted of
18 diffuse reflectance spectroscopy data points within the
avelength range of 400–725 nm for 57 measurements. The

esolution of the spectra is one data point every 0.5 nm.
We used MATLAB R14 �The MathWorks, Natick, Massa-

husetts� and its statistics toolbox for data analysis in this
tudy.

.3 Preprocessing
he spectra were normalized to remove interpatient variation.
s suggested by our previous study.30 the spectra were dark

ubtracted, then divided by the diffuse reflectance from a
hite standard �Labsphere, SRS-99� to correct for the spectral

esponse of the system and spectral profile of the source. Then
ach spectrum was normalized by dividing each intensity
alue by the intensity at 420 nm. No downsampling was per-
ormed in this study because detailed data were needed for
iecewise linear regression.
ournal of Biomedical Optics 047012-
3.4 Piecewise Linear Regression for Spectral Feature
Extraction

We developed an algorithm to adaptively adjust the spectral
window size for feature extraction from optical spectra. The
spectral window sizes are maximized given defined accept-
able linear fits on the spectrum.

Our method first sets an initial spectral window size of
5 nm. The choice of this initial spectral window size is based
on the spectral resolution �5 nm� of our measured spectra.
The spectral window size is iteratively increased by 5 nm,
and simple linear regression is performed within the spectral
window. A stopping criterion of R2 of 0.8 is applied to ensure
the goodness of each fit. The spectral window size and stop-
ping criterion can be adjusted if other spectroscopy data, such
as fluorescence spectra, are used. This algorithm ensures each
piece of the linear model achieves the largest possible window
size to fit a linear regression line with an R2 value of 0.8 or
greater. Once the R2 value falls below 0.8, the iteration ends
and the starting position of the next window is set at the
ending position of the current window. The new window size
is re-initialized to 5 nm, and the calculation for R2 is re-
peated.

3.5 Feature Extraction
Within every spectral window, eight spectral features are ex-
tracted to describe the signal �Table 1�. Six features have been
used previously by others to capture diagnostic information to
detect cancer. These features were used to detect cancer in
various organ sites: oral,12,19 breast,5 and bladder,31 with dif-
fuse reflectance spectroscopy,5,12,19,31 and fluorescence
spectroscopy.12

Features 1, 2, 4, 7, and 8 are adopted from liter-
ature.5,12,19,31 In these previous studies, the features were
extracted and fed to classifiers or clustering methods as in-
puts. In our study, we try to leverage this by extracting similar
features to investigate the effect of adaptive windowing.

We contribute novel features 3, 5, and 6, which are the
minimum, median, and maximum intensities, respectively,
within each spectral window. These extreme points �maxi-
mum, minimum� provide additional information not repre-
sented by other summary features, such as the slope and in-
tercept.

3.6 Performance Evaluation
In this study, and generally in spectroscopy data processing,
performance is evaluated based on individual windows. In
other words, performances of wavelength bands are evaluated
separately. This step is necessary for two reasons. First, the
number of features is very large if all of the wavelengths are
involved in the analysis, especially with fixed-size windows.
Second, this method can provide important insights for instru-
ment development. Analyzing different wavelength bands en-
ables measurements only at certain wavelengths, making it
inherently suitable for filter-based imaging instrumentation
design.

The wavelength-based performance analysis uses all eight
features extracted from a window to predict to which of the
two diagnostic categories each spectrum belongs. We consider
only two of the possible diagnostic tasks in order to simplify
the analyses, as follows:
July/August 2010 � Vol. 15�4�4
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1. Normal versus MD+SD
2. Benign versus MD+SD

ask 1 is very commonly studied in the literature because it is
ssumed to be, pathologically, the most distinct comparison.30

ask 2 is arguably the most important task clinically, because
istinguishing disease cases from visually abnormal but
athologically benign cases is the key challenge faced by the
hysician.

In our analyses, three windowing techniques are evaluated,
s described earlier in Sec. 4.1, �i� no windowing, �ii� fixed-
ize windowing, and �iii� adaptive windowing. For each win-
ow throughout the spectrum, the eight features listed in
able 1 are extracted. A two-class linear discriminant analysis
LDA� classifier is used to combine the eight features. A
eave-one-out cross-validation strategy is employed, and the
rea under the receiver-operating-characteristic �ROC� curve
AUC� is used as an evaluation metric for the diagnostic
ower of each wavelength. The features are extracted from
ach window, but the AUCs are evaluated per wavelength
ecause the window definitions vary across spectra.

One AUC value is reported for each window. Therefore, in
he adaptive and fixed-size windowing methods, the wave-
ength space is divided into fixed-size or adaptive size win-
ows; thus, each window results in one AUC value. In com-
arison, in the no-windowing method, only one set of features
s extracted; thus, there is only one AUC value for the entire
avelength space.

.7 Classification and ROC Analysis
he classification task in this study is carried out using LDA,
hich is a linear classifier that searches for a hypersurface in

he feature space that has an orientation to effectively dis-
riminate between the two classes of data. The choice of this
lassifier is based on both its high computational efficiency
nd the previous success of LDA with this type of data set. In
ur previous study, we used LDA exhaustively to search for
he most discriminatory features and identified that LDA can
chieve high AUC on this task.30 The purpose of this study is
o compare the different windowing techniques in feature ex-
raction; thus, the same classifier is used throughout this pa-
er.

ROC analysis is used to quantify performance for two-
lass classification tasks.33 Sensitivity and specificity indicate
he ability of the diagnostic method to distinguish between
wo groups �e.g., healthy and diseased�. By varying the
hreshold, an ROC curve of sensitivity versus �1-specificity� is
enerated. However, the AUC is often used as a metric to
uantitatively summarize the performance of a clinical deci-
ion support system. Therefore, we use AUC as the metric to
valuate performance. The higher the AUC metric is, the bet-
er the performance is. An AUC value of 1 represents perfect
iscrimination, while an AUC value of 0.5 represents perfor-
ance expected by chance alone.

.8 Denoising
oisy data can interfere with classifier training. We used two
rocedures for denoising: �i� Thresholding on classifier out-
uts and �ii� outlier removal. These two procedures are de-
cribed as follows.
ournal of Biomedical Optics 047012-
Thresholding on classifier outputs uses the classifier output
values to identify situations where the classifier has not been
properly trained. Specifically, if all of the normalized classi-
fier outputs fall in the range 0.4 to 0.6 �0 being negative cases
and 1 being positive cases�, the classifier has not been effec-
tively trained to distinguish between the target groups. Like-
wise, if the mean classifier output for the positive cases is
smaller than the mean classifier output for negative cases,
then the classifier has not been effectively trained to distin-
guish between the two classes. If either of these two criteria is
met, then we consider the predictive LDA model to be too
noisy to make a proper prediction and we remove this LDA
and its corresponding AUC from our analysis.

Unlike thresholding of classifier outputs, outlier removal is
performed to identify a particular spectrum as distinct from all
other spectra. Outlier removal is performed in the feature
space and is based on the Mahalanobis distance �MDist�
measure.34 The MDist is a multivariate measure �in square
units� of the separation of an unknown data set from a known

Fig. 2 Sample diffuse reflectance spectra for �a� normal �b� benign �c�
MD, and �d� SD patients. The solid curve indicates the measured
diffuse reflectance spectrum, while the dashed curve indicate indi-
cates the fitted spectrum based on our piecewise linear regression
model.
July/August 2010 � Vol. 15�4�5
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et �with mean � and covariance matrix S� in space. The
dist of a data set, when applied to itself, can be used to find

utliers. It has been shown that for a large sample of multi-
ariate normal data, the MDist follows approximately a �2

istribution with the degrees of freedom being the number of
he variables.34 We consider a spectrum to be an outlier if its

Dist is larger than the critical point �significance level �
0.001� of the �2 distribution with the degrees of freedom
eing the number of variables participating in the MDist.

The denoising of the data is different from the preprocess-
ng step described in Sec. 4.3. The denoising of the data is
ecessary because it removes unwanted information from the
eature space, while the data preprocessing rescales the data
rom the spectroscopic space.

.9 Statistical Comparison of AUC Values
bootstrapping technique was used to estimate the signifi-

ance of the observed difference in the AUC between LDA
odels.35 P values below the conventional threshold of 0.05
ere regarded as statistically significant. In some comparisons

n this study, a few cases were removed by the outlier identi-
cation algorithm for one windowing method but not the
ther. For example, case 19 is removed in adaptive window-
ng in Normal versus MD+SD, but not removed in the fixed
indows’ analysis. In order to compare the two windowing

echniques, we remove all of the cases that are defined as
utliers in either of the two methods under study.

.10 Studying Effects of Different Initialization Points
n principle, the initialization point of the first spectral win-
ow in piecewise linear regression may be a factor that affects
erformance. In other words, different starting points may
ause the entire spectrum to be adaptively divided into differ-
nt windows. To investigate this possibility, we experimented
ith multiple initialization points to determine if different ini-

ialization points result in different piecewise linear regression
odels.
Three different experiments were conducted:

�1� Small-range variations of initialization points: Several
initialization points were used: 400, 405, 407, 410,
415, and 420 nm. Because these changes are small, we
start the windows from these initialization points and
discard the data points before the initialization points.
We then visually assess these regression models and
the window definitions.

�2� Large-range variations of initialization points: three
initialization points were tested: 400, 562, and
725 nm. These points represent the smallest, middle,
and largest wavelengths in our data. Because these
variations are too large to discard any data, as in our
first experiment, we modified the window growing di-
rection. For 400 nm, we start from the left and grow to
the right. For 562 nm, we start at the middle of the
spectra and grow both to the left and the right. For
725 nm, we start from the right and grow solely to the
left. We then visually assess these regression models
and the window definitions.

�3� For all those window definitions obtained from steps 1
and 2, we extract features from these windows with
ournal of Biomedical Optics 047012-
different initialization points and evaluate the AUC to
see whether the initialization point is an important fac-
tor for the adaptive windowing technique.

4 Results
4.1 Piecewise Linear Regression Models
Sample results of our piecewise linear regression model are
shown in Fig. 2. These four examples show diffuse reflectance
spectra measured on four sites with different histopathology
statuses �solid curves�. These measured spectra are fitted by
our piecewise linear regression models to iteratively search
for maximum window sizes with acceptable goodness of fit
�dashed curves�. These fitted piecewise linear models define
different sizes of spectral windows for feature extraction.
These fitted spectra are not intended to replace measured sig-
nals. On the contrary, features are extracted from the mea-
sured spectra.

A qualitative look at these piecewise linear regression
models reveals that the regression models capture most of the
variability within each spectrum; thus, most of the spectral
information is retained while the number of windows needed
in feature extraction is reduced relative to using a smaller
fixed window size. For example, Fig. 2�a� has a window that
starts at 425 nm and ends at 500 nm—a window size of
175 nm, which is about nine times the size of the 20-nm fixed
windows. This larger spectral window captures the relevant
features necessary for classification that are also contained in
several smaller windows, but using one large window has less
redundancy. The features slope �features 2� and intercept �fea-
ture 3� are the same with large or small windows. The inten-
sities features �features 4–7� may change for larger windows,
but they are linearly proportional as shown in previous theo-
retical derivations �Sec. 2� such that the classifier will com-
pensate for it. Therefore, this piecewise linear regression
method decreases the redundancies in feature extraction rela-
tive to a fixed window size. An important finding of this study
is that the adaptive windowing technique uses fewer windows
to cover regions that behave similarly. In other words, several
fixed-size windows may cover a wide range of the spectrum
that could instead be represented equally effectively in a
single window. Adaptive windowing, on the other hand, pre-
serves diagnostic information while decreasing the redun-
dancy.

4.2 Feature Extraction
After defining the adaptive windows, eight features are ex-
tracted from each window. In this section, we evaluate the
three windowing techniques �no windowing, fixed-size win-
dowing, and adaptive windowing� by looking at the AUC per-
formances and the feature redundancies of each windowing
technique.

In Table 2, we compare the predictive power of the three
windowing techniques. For each window, all eight features
were used to train a LDA classifier via leave-one-out cross
validation to obtain the AUC. Because there are multiple win-
dows involved in windowing techniques �fixed-size, adaptive
windows�, multiple AUCs are reported. In Table 2, the maxi-
mum and median AUCs of each windowing method are listed.
The complete list of AUCs �not only maxium and median� are
shown in Table 3. The classifiers based on features extracted
July/August 2010 � Vol. 15�4�6
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rom adaptive or fixed-size windows outperform the classifier
ased on features extracted from the entire spectrum �no win-
owing�. This same trend is apparent for both the normal
ersus MD+SD and benign versus MD+SD classification
asks. Specifically, the maximum AUC of classifiers
rained on features extracted from adaptive windows �max
UC=0.73� is statistically significantly �p=0.04� larger than

hat of the classifier based on features extracted from the en-
ire spectrum �no windowing, AUC=0.61� for normal versus

D+SD. Likewise, the maximum AUC of the classifiers
rained based on features extracted from fixed windows �max
UC=0.73� is statistically significantly larger �p=0.04� than

hat of the classifier based on features extracted from the en-
ire spectrum �no windowing, max AUC=0.61� for normal
ersus MD+SD and also for benign versus MD+SD with
daptive �max AUC 0.79 versus AUC 0.68, p=0.04� and
xed windows �max AUC 0.83 versus AUC 0.68, p=0.01�.
rom these statistical analyses, we found that the maximum
UCs by windowing techniques are all higher than no-
indowing techniques, in both normal versus MD+SD and
enign versus MD+SD, and these AUCs are significantly
igher �p�0.05� in all of four comparisons.

Because the maximum AUCs represent the best diagnostic
ower of the spectrum across all wavelengths, we showed that
indowing techniques provide better diagnostic accuracy than
o windowing. Moreover, the classifiers based on adaptive
indows are as good as those based on fixed windows in both
ormal versus MD+SD and benign versus MD+SD.

On the other hand, the median AUCs for both normal ver-
us MD+SD and benign versus MD+SD did not show a
tatistically significant improvement over the no-windowing
echnique. The results tell us that the median AUCs of win-
owing and those of no windowing are similar. This is equiva-
ent to comparing a group of mediocre performers to the av-
rage of all performers. Therefore, comparison of median
erformance does not predict which window has the most
iagnostic power.

Table 2 Statistics from three windowing techniq
fiers trained using all eight features from each sp
techniques found that the maximum AUC for b
significantly better �p=0.04� than the no-windo
MD+SD. Both the adaptive and fixed wind
�p=0.04 and 0.01� over the no-windowing techn
For both classification tasks, the median AUC
no-windowing technique. The results demonstrat
higher maximum AUCs than no windowing. It
yields classifiers as effective as the fixed window

Normal versus MD+SD

Adaptive
window

Fixed-size
window
�20 nm�

No
wind

Maximum
AUC

0.7259 0.7273 0.61

Median
AUC

0.6245 0.5136
ournal of Biomedical Optics 047012-
In addition to evaluating the windowing techniques based
on the resulting classifier efficacy, we also investigated the
efficiency of the classifiers. Specifically, we examined the
number of unique features extracted, the average number of
windows used per spectrum, and the total number of windows
used �Table 4�. The unique features are calculated by simply
removing repeated features extracted in our program. These
repeated features are commonly seen in fixed-size windows.
For both the normal versus MD+SD and benign versus
MD+SD diagnostic tasks, the adaptive windowing technique
requires fewer windows �8 windows instead of 16� but pro-
duces more unique features �60 unique features instead of 17�
relative to the fixed windowing method. This comparison
demonstrates that adaptive windowing is able to maximize the
information obtained in one window and consequently reduce
the number of windows needed to maintain the diagnostic
power. In other words, adaptive windowing avoids the use of
redundant windows that are employed by the fixed-size win-
dowing method. Likewise, while reducing the number of data
points used for feature extraction, the number of unique fea-
tures remains high in adaptive windows. The adaptive win-
dowing technique is able to retain the variability of data while
reducing the data dimensionality in feature space.

This observation agrees with our theoretical assessment in
Sec. 2 that adaptive windowing preserves information by us-
ing a larger adaptive window to cover the region where fixed-
size windows behave similarly and extract similar and redun-
dant features.

4.3 Effect of Different Initialization Points
As described in Sec. 3.10, there are three experiments con-
ducted. First, the adaptive windowing technique was applied
with different initialization points: 400, 405, 407, 410, 415,
and 420 nm �Fig. 3�. In Fig. 3, we selected one spectrum of
category SD to visualize the window definitions of different
initialization points. It is visually apparent that the adaptive
window definitions are only slightly shifted from each other.

he maximum and median AUCs for LDA classi-
indow. Pairwise comparison of the windowing
adaptive and fixed window technique perform
ethod for the classification task normal versus
hniques also showed improved performance
r the classification task benign versus MD+SD.
show statistically better performance over the

alue of windowing, as adaptive/fixed windowing
ggests that the adaptive windowing technique
hnique.

Benign versus MD+SD

Adaptive
window

Fixed-size
window
�20 nm�

No
windowing

0.7879 0.8333 0.6818

0.6996 0.7235
ues. T
ectral w
oth the
wing m
ow tec
ique fo

did not
e the v
also su
ing tec

owing

14
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able 3 Supplementary data. A list of all the AUCs generated using
DA classifiers trained using all eight features from each spectral win-
ow. The maximum and median values of these AUCs are shown in
able 2. The number of AUCs is higher for adaptive windows because
hey have more unique �nonrepeated� features. Repeated features are
ommonly seen in fixed windows; they are removed here. The no-
indowing technique takes the entire spectrum to do feature extrac-

ion and classification; therefore, only one AUC is calculated.

Normal versus MD+SD Benign versus MD+SD

Adaptive Fixed
No

windowing Adaptive Fixed
No

windowing

0.42 0.55 0.61 0.68 0.69 0.68

0.68 0.50 0.65 0.78

0.60 0.57 0.69 0.72

0.60 0.55 0.65 0.80

0.77 0.46 0.74 0.68

0.60 0.73 0.74 0.69

0.51 0.49 0.71 0.83

0.64 0.44 0.64 0.68

0.64 0.52 0.77 0.77

0.59 0.49 0.77 0.74

0.71 0.53 0.69 0.73

0.73 0.49 0.68 0.72

0.72 0.51 0.59 0.63

0.74 0.57 0.50 0.67

0.66 0.46 0.64 0.71

0.72 0.69 0.73

0.69 0.71 0.61

0.72 0.61

0.69 0.66

0.74 0.69

0.62 0.70

0.72 0.74

0.66 0.67

0.74 0.71

0.65 0.71

0.60 0.70

0.63 0.73

0.66 0.70

0.65 0.75

0.49 0.68
ournal of Biomedical Optics 047012-
Table 3 �Continued.�

Normal versus MD+SD Benign versus MD+SD

Adaptive Fixed
No

windowing Adaptive Fixed
No

windowing

0.56 0.76

0.52 0.70

0.53 0.70

0.56 0.74

0.56 0.70

0.59 0.79

0.60 0.77

0.60 0.72

0.60 0.75

0.60 0.75

0.61 0.72

0.59 0.75

0.64

0.64

0.67

0.70

0.67

0.67

0.67

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.64

0.62

0.67

0.67
July/August 2010 � Vol. 15�4�8
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or a range of 20-nm changes in initialization points, the
indow definitions are only shifted within 10 nm. Compared

o the wavelength span of 325 nm �400–725� of the spectra,
he shift is very small. Hence, from our first experiment, be-
ause the window definitions are similar, the features ex-
racted from windows identified with different initialization
oints should be similar. We further investigated this in the
hird experiment.

In the second experiment, we investigated a larger range of
he initialization points. Because the ranges are larger, we

odified the algorithm such that we do not discard the spec-
ral data to the left of the initialization point �as we did in the
revious experiment�. The modified version of the algorithm
grows” windows to the left or right side of the initialization
oint. Three initialization points were tested: 400 �the smallest

Table 4 Numbers of unique features extracted an
adaptive windows require fewer windows on
windowing technique has 44 and 35 “total numb
each case, and each spectrum has one window.

Normal versus MD+S

Adaptive
window

Fixed-size
window
�20 nm�

No
win

Number of
unique
features
extracted

60 17 1

Average
number of
windows per
spectrum

8.5 16 1

Total
number of
windows

374 704 44

ig. 3 Adaptive window technique applied on a spectrum with variab
7 spectra in the data set. The patient belongs to SD pathology group.
re the windows. This example shows that the variable initialization p
ithin 10 nm, which is 1.4% of the entire spectrum�.
ournal of Biomedical Optics 047012-
wavelength�, 562 �the median of the wavelengths�, and 725
�the largest wavelength�. The results are shown in Fig. 4.
Similar to Fig. 3, in Fig. 4, the same spectrum is used to
visualize the window definitions of different initialization
points. By visually assessing the window definitions, we can
see that the initialization point of 400 and 562 nm have more
similar window definitions; whereas the ones with 725 nm
have larger variations from those of 400 and 562 nm.

In the third experiment, we tested the performance of these
different initialization points. We calculated the AUCs for the
classifiers based on features extracted from the adaptive win-
dows defined by these different initialization points. All eight
features are used to train an LDA classifier using leave-one-
out cross validation. The maximum AUC ranges from 0.65 to
0.82 �Table 5� based on the choice of initialization point.

indows per spectrum are presented. It shows that
, but produce most unique features. The no-
indows” because there are 44 and 35 spectra in

Benign versus MD+SD

g
Adaptive
window

Fixed-size
window
�20 nm�

No
windowing

60 14 1

7.71 16 1

270 560 35

ialization points within a small range. This is one example out of the
id black curve is the measured spectrum, and the dashed straight lines
o not affect the window definitions very much �i.e., the changes are
d of w
average
er of w

D

dowin
le init
The sol
oints d
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imilarly, the median AUC ranges from 0.56 to 0.66 based on
he choice of the initialization point. Conversely, the AUCs
or fixed windows do not change at all with different initial-
zation points.

These results in Table 5 give us two interesting perspec-
ives: first, the adaptive windowing technique has flexibility to
chieve higher AUC �0.82� to outperform fixed windowing
0.73�. However, this also raises the concern that the adaptive

ig. 4 Adaptive window technique applied on a spectrum with variab
pectra in the data set. The patient belongs to SD pathology group. Th
re the windows. In this experiment, the initialization points differ �in
ither the left or right side of the initialization point—they grow to th
ide with 725 nm. This example shows that the window definitions ar
istinguishable.

able 5 AUCs calculated from different initialization points. It is
hown that the AUCs of adaptive windows differ when the initializa-
ion point is varied, whereas the AUCs from fixed windows remain the
ame. Some of these AUC changes are statistically significant �0.82
ompared to 0.65�. This shows that adaptive windowing has a depen-
ency on where the window definition starts, which gives the adap-

ive windows flexibility to achieve higher accuracy to predict the dis-
ase �AUC=0.82�. However, this also shows that fixed windows have
etter robustness because adaptive windows depend on their initial-

zation points.

Maximum/median AUC for normal versus MD+SD

Adaptive windows Fixed windows

00 0.73/0.62 0.73/0.51

05 0.78/0.66 0.73/0.51

07 0.82/0.66 0.73/0.51

10 0.73/0.58 0.73/0.51

15 0.65/0.56 0.73/0.51

20 0.70/0.62 0.73/0.51

62 0.70/0.59 0.73/0.51

25 0.78/0.56 0.73/0.51
ournal of Biomedical Optics 047012-1
windowing has variability where it is not guaranteed to have
the optimum performance and consistency in terms of the
initialization points. In other words, the initialization point
needs to be optimized to produce the best performance. Sec-
ond, while the window definitions of initialization points 400
and 725 nm may seem very different, their AUCs are not that
different. The AUCs for the 725 and 405 nm initialization
points are the same �AUC=0.78�. Therefore, optimizing the
AUC from adaptive window does not require running through
all the possible wavelengths. Instead, running a number of
initialization points in a small range and looking for the best
AUC may be sufficient; in our example, we considered 6
points in 20 nm. This 20-nm range is adjustable and needs to
correspond with the starting window size of the adaptive
window–defining algorithm.

5 Discussion
We investigated the impact on classifier performance of using
three different windowing techniques: adaptive windowing or
fixed-size windowing, compared to using no windowing. The
results in Table 2 show that significant differences in the
AUCs �p�0.05� were observed using classifiers trained on
features extracted when windowing techniques were em-
ployed and classifiers trained on features extracted from the
entire spectrum �i.e., no windowing� for two diagnostic tasks
�normal versus MD+SD and benign versus MD+SD�. In
other words, from the observations in maximum AUCs, either
windowing technique is better than no windowing in terms of
providing accurate diagnostic information. This result agrees
with previous studies on different optical spectroscopy data
sets7,18 that chose fixed-size windowing techniques. Bigio et
al.5 divided the measured spectrum into fixed-size wavelength
bands of 20 nm from 330 to 750 nm, followed by feature
extraction of average intensity within the wavelength band,
and then PCA to reduce dimensionality for the input of arti-
ficial neural network. In addition, Johnson et al.18 also used
PCA to select only the wavelength regions with large variabil-

lization points within a large range. This is one example out of the 57
black curve is the measured spectrum, and the dashed straight lines

r range� from the previous experiment �Figure 3�; Windows “grow” to
with 400 nm initialization, to both left and right with 562 nm, to left
lly similar for 400 and 562 nm, but the ones with 725 nm are visually
le initia
e solid
a large
e right
e visua
July/August 2010 � Vol. 15�4�0
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ty. These studies divide spectra into wavelength bands under
he assumption that some wavelength bands have more diag-
ostic power. The statistically significant AUCs observed in
ur study verify this hypothesis.

We also found that significant differences were not ob-
erved between adaptive and fixed-size windowing, suggest-
ng that these two windowing techniques perform equally well
n the two diagnostic tasks explored. This underscores the

ain focus of this study—that adaptive windows capture
iecewise linear information in a more adaptive and flexible
ashion. From the comparison of classifiers based on fixed-
ize windows and adaptive-size windows, we conclude that
daptive windowing more efficiently captures diagnostically
elevant spectral features without a statistically significant de-
rease in classifier performance.

Our adaptive window technique defines spectral feature
xtraction regions using linear regression �Fig. 1�. We utilize
eatures that capture the linearity of the spectrum. Therefore,
t is intuitive that this adaptive windowing technique captures
egional changes more efficiently than fixed-size windowing.
o further support this intuition, we also showed both theo-
etically �Sec. 2� and experimentally �Sec. 4� that the adaptive
indows have less redundancy than fixed windows. The pur-
ose of our theoretical derivations is to prove that features
xtracted from two fixed-size windows can be replaced by
eatures extracted from a single adaptive window. To achieve
his, we examined a common situation �Fig. 1�, where the
ignal in two fixed-size windows �windows 1 and 2� and one
daptive-size window �window 3� share the same regression
ine �solid line�. In this case, we demonstrated that the
daptive-size window has all the information that the fixed-
ize windows can provide, while reducing the data size by
alf. In our derivation, we successfully showed that all the
eatures we chose have a linear relationship, proving that the
daptive-size window can completely represent the fixed-size
indows. Adaptive windows can be viewed as linear “combi-
ations” of smaller and potentially redundant fixed-size win-
ows.

We further showed a reduction of redundancy in diagnostic
nformation in Table 4. The average and total number of win-
ows used is lower for adaptive windows than fixed-size win-
ows. Furthermore, adaptive windows provide more unique
eatures extracted from the overall data set. While the dimen-
ionality of the feature space was reduced, there were no sig-
ificant AUC differences observed between adaptive windows
nd fixed-size windows. Therefore, adaptive windowing is ca-
able of teasing out unwanted redundancies that are inherent
n fixed-size windowing methods.

To investigate the uniqueness of the adaptive windows, we
pplied different initialization points to adaptive windowing.
n an effort to minimize computation time, we restricted op-
imization of the initialization point to the range
00–420 nm. We also investigated two initialization points
ithin a larger range �562 nm, 725 nm�. The results of visual

ssessment showed that, with a variation of 20 nm in initial-
zation points, the resulting adaptive windows only have a
0-nm range shift. The highest AUC �0.82� was found for an
nitialization point of 407 nm. An exhaustive search over the
ntire wavelength range may provide better AUC. However,
hile larger variations in the initialization points �562 and
ournal of Biomedical Optics 047012-1
725 nm� show detectable differences of window definitions,
their AUCs do not show significant improvement for this data
set. These results demonstrate that the choice of initialization
point is important and can affect AUC. AUCs for fixed win-
dows do not change with different initialization points. De-
pending on the initialization point, the adaptive window
AUCs can have better performance than both the no-window
technique and the fixed-window method. Consequently, the
adaptive window method has flexibility to achieve higher ac-
curacy to predict the disease.

Decreasing redundancies in features can be very beneficial.
In practical instrumentation design, memory can be an impor-
tant concern when trying to implement rapid diagnostic analy-
sis of patient spectra. Adaptive windowing has fewer features
extracted; thus, less computational memory is required. In ad-
dition, a large number of features with limited number of
subjects often leads to overtraining of classifiers. Reducing
the dimensionality of feature space helps alleviate overtrain-
ing. In previous studies we surveyed, overtraining concern is
dealt with by applying PCA to reduce the dimensionality.
However, PCA removes all physical property information,
limiting understanding of underlying biophysical processes
during disease progression. Therefore, the adaptive window-
ing technique is preferred over PCA for reducing the dimen-
sionality. A further benefit of adaptive windowing is that it
permits the isolation of unique diagnostic features without a
priori knowledge of tissue properties. This unbiased perspec-
tive can be used as a complement to physical models of light
tissue interaction, aiding the elucidation of the biophysical
processes underlying disease development.

In this study, we tested an adaptive windowing algorithm
on a diffuse reflectance spectroscopy data set. We note that
our adaptive method may be suitable for other spectroscopy
signals if the spectra have a smooth pattern similar to that
found in diffuse reflectance spectroscopy or fluorescence
spectroscopy. In other words, when the tendency of spectrum
is smooth �not having too many peaks in a short wavelength
range�, the adaptive windowing technique significantly re-
duces the number of windows used relative to a fixed-size
windowing approach. When the signal has high variation in
one specific wavelength band, such as in a Raman spectrum,
the number of adaptive windows becomes larger than that of
fixed windows. However, in that situation, adaptive windows
might be beneficial for segmentation of peaks.

6 Conclusion
In recent years, there has been a debate on which diagnostic
algorithm to use for bio-optical cancer-detection modalities.29

Various analysis methods have been used, including model-
based analysis, statistics-based analysis, and hybrid analyses.
This paper focuses on providing a new aspect for statistics-
based analysis. First, we verified the hidden assumption by
Bigio et al.5 and Johnson et al.18 that wavelength bands �de-
fined by fixed-size windows� need to be separated in analyses
because they have different diagnostic power. Second, we
proposed a new adaptive windowing technique that avoids the
feature redundancies from fixed-size windows feature extrac-
tion. Because adaptive windows retain most diagnostic infor-
mation while reducing the number of windows needed for
feature extraction, our results suggest that it is useful for data
July/August 2010 � Vol. 15�4�1
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