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Abstract. Analytical expressions for the power spectral den-
sity (PSD) are often useful in stochastic lithography simulation
and the metrology of roughness. Using a common stretched
exponential correlation function with three parameters (stan-
dard deviation, correlation length, and roughness exponent),
the PSD can be computed as the Fourier transform of the
autocorrelation function. For the special cases of roughness
exponent equal to 0.5 and 1, the PSD can be computed an-
alytically for one, two, and three dimensions. In this paper,
the analytical results of these calculations are given. The re-
sulting equations can be used when modeling rough lines,
surfaces, or volumes. C© 2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3663567]
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1 Introduction
In both stochastic lithography modeling and analysis of
roughness metrology data, it is sometimes necessary and
often desirable to have an analytical expression for the
power spectral density (PSD) that is both grounded in
the known physics of stochastic processes and matches
experimental evidence for those processes. Many diverse
stochastic processes with a single correlation mechanism are
known to follow an exponentially decaying autocorrelation
function, R:

R(r ) = σ 2e−(r/ξ )2α

, (1)

where σ is the standard deviation of the behavior (for exam-
ple, the rms line-edge roughness), ξ is the correlation length,
α is the roughness exponent, and r is the distance (equal
to |x| in one dimension,

√
x2 + y2 in two dimensions, and√

x2 + y2 + z2 in three dimensions). This function is often
called a stretched exponential or the Kohlrausch–William–
Watts function1 and is frequently encountered in relaxation
processes,2 as well as correlated roughness, where self-affine
behavior of the roughness exists on length scales less than
the correlation length. It has been used successfully in many
studies of line-edge roughness, for example.3, 4

Since the correlation function of Eq. (1) is frequently
encountered in stochastic processes, it makes sense to use
this function as the basis for PSD analysis. The power
spectral density is simply the Fourier transform of the
correlation function (by the Wiener–Khinchin theorem).
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Unfortunately, analytical solutions to this Fourier transform
are possible only for certain values of the roughness
coefficient: α = 0.5 and α = 1. In Secs. 2–4, the analytical
forms of the PSD for these two values of α will be derived
in one, two, and three dimensions. The PSD for α = 0.5
in one and two dimensions has been previously derived,5

as has the α = 1 case in one and two dimensions. Since
most experimental line-edge roughness (LER) results show
values of the roughness exponent between 0.5 and 1, these
represent important limiting cases.

Analytic forms for the PSD are useful in two applica-
tions: metrology and simulation. Metrology data for LER
and linewidth roughness can be fit by an analytical one-
dimensional (1D) PSD, and surface roughness by a two-
dimensional (2D) PSD, enabling the extraction of both σ
and ξ . When generating random rough lines, surfaces, or
volumes for simulation, an analytical form of the PSD can
be used to generate random data with the desired autocorre-
lation response. Thus, it is useful to have as complete a set
of analytical PSD functional forms as possible.

2 One-Dimensional Case
Since the autocorrelation function being used here is even,
the Fourier transform in one dimension becomes a Fourier
cosine transform.

G( f ) = 2
∫ ∞

0
g(x) cos (2π f x) dx . (2)

Applying the Fourier cosine transform to the autocorrelation
function of Eq. (1) results in the 1D PSD.

For α = 0.5:

PSD( f ) = 2σ 2ξ

1 + (2π f ξ )2 . (3)

For α = 1:

PSD( f ) = √
πσ 2ξ e−(π f ξ )2

. (4)

3 Two-Dimensional Case
In two dimensions, the radial symmetry of the autocorrela-
tion functions lends itself well to a Fourier transform using
polar coordinates. The 2D Fourier transform in Cartesian
coordinates is

G( fx , fy) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)e−i2π( fx x+ fy y)dxdy. (5)

Converting both the real space and frequency space coordi-
nates to polar coordinates,

x = r cos θ, y = r sin θ, fx = fr cos ϕ, fy = fr sin ϕ,

(6)

and

G( fr , ϕ) =
∫ ∞

0

∫ 2π

0
g(r, θ )e−i2π fr r cos(θ−ϕ)rdrdθ. (7)

For the case of a radially symmetric function, the θ inte-
gration can be carried out giving the Hankel transform (also
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called the Fourier–Bessel transform):

G( fr ) = 2π

∫ ∞

0
r g(r )J0 (2π fr r ) dr , (8)

where J0 is the Bessel function of the first kind, zero order.
Applying the Hankel transform of Eq. (8) to the autocorrela-
tion function of Eq. (1) results in the 2D PSD.

For α = 0.5:

PSD( f ) = 2πσ 2ξ 2

[1 + (2π f ξ )2]3/2
. (9)

For α = 1:

PSD( f ) = πσ 2ξ 2 e−(π f ξ )2
. (10)

4 Three-Dimensional Case
In three dimensions, the 3D Fourier transform can be con-
verted to spherical coordinates. For the special case of a
radially symmetric function, the 3D Fourier transform in
spherical coordinates becomes

G( fr ) = 4π

∫ ∞

0
r2g(r )

[
sin (2π fr r )

2π fr r

]
dr

= 2

fr

∫ ∞

0
rg(r ) sin (2π fr r ) dr . (11)

Applying this spherical 3D Fourier transform to Eq. (1),

For α = 0.5:

PSD( f ) = 8πσ 2ξ 3

[1 + (2π f ξ )2]2
. (12)

For α = 1:

PSD( f ) = π3/2σ 2ξ 3 e−(π f ξ )2
. (13)

5 Summary
Letting d be the dimensionality of the problem, the results
can be summarized as follows:

For α = 0.5:

PSD( f ) = ad σ 2ξ d

[1 + (2π f ξ )2](d+1)/2
, (14)

where a1 = 2, a2 = 2π , and a3 = 8π .

For α = 1:

PSD( f ) = πd/2σ 2ξ d e−(π f ξ )2
. (15)

These results, especially for the 3D case, should prove useful
in many simulation studies.
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