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Abstract. The Origins Survey Spectrometer (OSS) is a multi-purpose far-IR spectrograph for
Origins. Operating at the photon background limit, OSS covers the 25- to 588-μm wavelength
range instantaneously at a resolving power (R) of 300 using six logarithmically spaced grating
modules. Each module couples at least 30 and up to 100 spatial beams simultaneously, enabling
true [three-dimensional (3D)] spectral mapping. In addition, OSS provides two high-resolution
modes. The first inserts a long-path Fourier-transform spectrometer (FTS) into a portion of
the incoming light in advance of the grating backends, enabling R up to 43; 000 × ½λ∕112 μm�,
while preserving the grating-based sensitivity for line detection. The second incorporates a
scanning etalon in series with the FTS to provide R up to 300,000 for the 100-to 200-μm range.
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1 Introduction

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first
galaxies and the rise of metals to the development of habitable worlds and present-day life.
Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules,
dust, water vapor and ice, and observations of extrasolar planetary atmospheres, protoplanetary
disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 μm
and is 1000 times more sensitive than its predecessors due to its large cold (4.5 K) telescope and
advanced instruments.

1.1 Scientific Motivation for Far-IR Spectroscopy

A number of high-priority Origins scientific investigations require sensitive, wide-bandwidth
spectroscopy covering the full the far-IR. The extragalactic science cases, in particular, center
around charting the cosmic history of the contents and processes within galaxies from the first
billion years to the present day using rest-frame mid- and far-IR spectral tracers. The various
mid-IR and far-IR features originate from a wide range of interstellar medium phases: ionized,
neutral atomic, and molecular material, and in aggregate they constrain heavy-element contents,
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local UV radiation field conditions, which reveal stellar properties and physical conditions
(temperature and density).1–3 Crucially, the features in this waveband are largely immune to dust
obscuration, providing an unbiased census of the interplay between stars, black holes, and the
interstellar material in any given observation.

Of particular interest for Origins, and driving the sensitivity, is the epoch of reionization and
the dawn of galaxies’ first billion years. As the Universe was enriched from primordial hydrogen
and helium to a medium that contains heavy elements and dust grains, the key cooling pathways
shifted from the quadrupole pure rotational H2 lines (28, 17, 12, 9.7, 8.0, 6.9,. . . , μm) (e.g.,
Refs. 4 and 5) to a combination of atomic fine-structure transitions and dust thermal emission.
Origins will probe both sides of this transition out to z ∼ 8 to 10 using H2 lines, fine-structure
lines, and polycyclic aromatic hydrocarbon (PAH) features at 6.2 to 17 μm, which have 15× more
power than the brightest atomic cooling lines.6 Both the H2 lines and most of the PAH features are
redshifted out of the James Webb Space Telescope (JWST) band, but not into the atacama large
millimeter array (ALMA) windows in the z ∼ 5 to 10 era. Origins with the Origins Survey
Spectrometer (OSS) spectrograph will detect these powerful bands at early epochs (Fig. 7).

Measuring these features does not require high spectral resolution, as integrated line fluxes
are all that is required. However, accessing the full-time history from the first billion years to
the present day does require both exquisite sensitivity (because of 1∕d2Luminosity dimming) and
coverage across the full far-IR to capture the wide intrinsic wavelength distribution of spectral
features—approximately uniformly in log λ and considering the large range of redshifts.

In addition to pointed observations of individual sources and fields identified a priori, similar
to what is done with ALMA and will be done with JWST, the OSS on Origins is designed to be
a powerful wide-field spectral mapper. In its blind survey mode, millions of galaxies will be
identified with redshifts and physical parameters immediately encoded.10 These requirements
set the basic architecture for the OSS: a suite of R ¼ 300 wideband long-slit grating spectrom-
eters with detectors operating at or near the fundamental limits.

The resulting excellent sensitivity to spectral line surface brightness (velocity-integrated,
spatially unresolved line emission with units of Wm−2 sr−1, e.g., from diffuse gas or unresolved
faint galaxies) also enables three-dimensional (3D) intensity mapping of residual line emission
fluctuations after individual sources are extracted. The resulting intensity maps can yield the total
cosmic luminosity density—including all sources even those too faint to detect individually—in
the key far-IR lines, charting aggregate properties of galaxies through time.11–17

For pointed observations, the high-resolution mode is also available (see below). This offers
a direct measure of stellar and black-hole feedback through outflow signatures in OH and other
transitions, potentially a key ingredient in the decline of the cosmic star formation rate density
over the last 8 billion years.18

Another driving case for the OSS is understanding the formation of planetary systems. This
requires tracking the evolution of gas mass and composition in protoplanetary disks from the
early (protostellar) phase to the late (debris-disk) stages where most of the gas has been dispersed
or absorbed into giant planets. For early stage, gas-rich disks, the fundamental of hydrogen deu-
teride (HD) at 112 μm is an excellent probe of total mass. It is an optically thin chemical analog
of H2 and has only a modest temperature dependence. The challenge for studying protoplanetary
disks is not so much the raw spectral line sensitivity—even the relatively weak HD integrated
line flux is typically high by comparison with lines in distant galaxies—but extracting line fluxes
accurately in the face of a bright dust continuum. HD, in particular, can be easily washed out by
the bright disk continuum so it requires a high resolving power (R ∼ several thousands) for
reliable measurement. Gas mass evolution is the first step, but with Origins we will also study
the conditions for Earth-like habitability by tracking water in disks with low-lying far-IR tran-
sitions that probe the bulk of the gas including that in the snow line. Distinguishing material
interior to the snow line from material further out requires line-width measurements with a
resolving power of 25,000 at wavelengths as long as 179 μm, a key ground-state water transition.
These higher-resolving-power requirements are satisfied with the addition of a Fourier-transform
spectrometer (FTS) which operates in tandem with the grating spectrometer suite. Finally,
in order to study the structure of disks through Doppler tomography, the OSS includes a very-
high-resolution mode using an etalon in concert with the FTS to provide δv ∼ 1 to 2 km∕s for
HD 112 μm and H2O 179 μm.
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2 OSS Functional Approach

Figure 1 shows the OSS functional approach. At the heart of the instrument are six slit-fed wide-
band grating modules, which combine to span the full 25 to 588 μm range. These grating modules
have nomoving parts and will be configured so that the six slits are co-aligned on the sky. Although
the beam sizes (setting the slit widths) and the slit lengths are not the same from band to band,
the co-alignment enables point sources incident in the band 1 slit to be simultaneously measured in
the longer-wavelength bands (see Fig. 5 in Leisawitz et al., this volume shows the Origins focal
plane configuration). Thewide-band echelle gratings, particularly the long-wavelength ones, which
require compact designs, typically only have high blaze efficiency in one linear polarization, so the
gratings are used in single polarization. Light from the telescope first encounters a polarizing grid;
one linear polarization is passed into one arm while one is reflected into a separate arm. One arm
then feeds bands 1, 3, and 5, whereas the other arm feeds bands 2, 4, and 6. Staggering odd- and
even-numbered bands allows high-efficiency dichroic filters to separate the bands and allows the
bands to overlap slightly in the two polarizations. Since the high-efficiency polarization is that with
the electric field perpendicular to the slit direction, either the even or odd bands will require polari-
zation rotation at the entrance to the slit. This can be accomplished with broadband half-wave
plates for which there is a rich heritage in the millimeter band 19–22 using multiple crystal plates
and metal mesh; techniques are amenable to operation at shorter wavelengths. More advanced
metamaterial approaches have also demonstrated good broadband performance.23–25

The grating suite is used in point-and-chop mode for deep observations of individual objects.
Here the observatory field steering mirror (FSM) modulates the image of a point source between
two positions on the slit. The grating modules also operate as a mapping instrument, in a manner
similar to Herschel/SPIRE,26 where detectors sample the sky as the slit is rastered around. For
OSS on Origins, this is accomplished either using the FSM for small fields [on order the tele-
scope field-of-view (FOV)] or for large fields by scanning the telescope itself as was done for
Herschel/SPIRE. Table 1 shows the high-level instrument parameters, sensitivity, and mapping
speed estimates for the base grating system of OSS.

Fig. 1 The OSS functional block diagram shows the six grating modules with their integrated
detector arrays, polarizing grid, and dichroic filters (all fixed, with no mechanisms). The beam
steering mirror (also known as the FSM) is part of the telescope. It provides chopping and enables
small maps using the grating slits. For high-spectral-resolution measurements over a small sub-
field, an interferometer is inserted into the train with a sliding mechanism with two mirrors on it. The
interferometer is a Martin–Puplett polarizing Fourier-transform system with an 8× path multiplier.
The baseline design includes an etalon (Fabry–Perot interferometer) that can be inserted into
the interferometer beam to enable very high resolution for Doppler tomography experiments.
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To provide higher spectral resolving power for individual sources, the interferometer is
engaged for a small field common to all bands. A sliding carriage moves two mirrors into the
beam: the first diverts the beam to the interferometer optics and the second reinserts it into the
beam so it is detected by the grating backends. The interferometer is a Fourier-transform system
designed to provide 7.5 km∕s resolution at the 112-μm HD rotational transition to match outer-
disk line widths. Using the gratings in tandem with the FTS preserves the good underlying
line sensitivity of the small per-detector bandwidth (R ¼ 300). Additionally, the interferometer
includes an insertable etalon (Fabry–Perot interferometer) that can further improve the resolving
power, enabling velocity-resolved measurements of HD and water in protoplanetary disks. This
system targets 1 km∕s at 112 μm. The etalon cavity operates in high order and is scanned to
produce a spectrum. These modes are described in detail in Sec. 4.3.

3 Optical Design

3.1 Grating Module Designs

Each grating module forms a light–tight enclosure that includes the detector array and for which
the only opening is a slit. Requirements that met by the optical design include as follows.

• Slit length on sky. At least 100 diffraction-limited beams for bands 1 to 5, and 75 beams for
band 6 (this provides margin—not all of this optical field is used in the baseline design
because of readout limitations).

• Intrinsic spectrometer resolving power λ∕δλ of at least 300 over a 1:1.75 bandwidth.

• Strehl >80% (goal >90%) imaging to a focal plane that images a 1.15 λ∕D spatial × R ¼
300 spectral element (band-averaged) onto an area no smaller than 0.25 mm2 (to enable
multiplexed detector readout).

The optical surfaces in the spectrometers are numerically optimized with many (∼20) degrees
of freedom, essentially approaching free-form surfaces, which is necessary to accommodate the
large range of spatial and spectral fields. This approach is fully consistent with the machined
aluminum construction. No constraints are placed on distortion in the focal plane, or “smile,”
which is the departure from a straight line of the spectrum from a given spatial position. This is
because imaging a slit to a slight arc on a top-dimensional (2D) rectangular pixel array simply
results in a slight wavelength shift of the pixels as one moves along the slit direction in the focal
plane, an issue easily handled in software and potentially providing a spectral sampling benefit.
Alternatively, if desired, a focal plane could be built with a custom arrangement of pixels in
curved rows to match a curved slit image, since each focal plane is already fully custom.
In any case, the slit shape at the entrance to the spectrometer (and thus on the sky) need not
be curved. The size and mass of the short-wavelength gratings are driven primarily by the pixel
pitch and thus the array size, whereas the long-wavelength modules are driven by the size of the
grating and associated pupil. Figure 2 shows the shortest and longest of the grating module
designs. The strawman detector array formats are tabulated for each band in Table 1, under
the assumption of 1.13 fλ sampling spatially by R ¼ 300 sampling spectrally. As is typical of
wideband grating systems that use a large incidence angle, the systems are highly anamorphic,
with spatial focal ratio (f∕#) much faster (∼2×) than the spectral focal ratio (f∕#). Pixels are,
therefore, rectangular, elongated in the spatial direction. Additionally, the physical size of an
R ¼ 300 bin changes across the band, so each focal plane will have at least two spectral pitches
across the full band to preserve a given fractional bandwidth per pixel.

3.2 Interferometer Design

The design of the interferometer (Fig. 3) is driven by the need to incorporate high spectral res-
olution at the long OSS wavelengths while maintaining the excellent sensitivity and multi-band
capability of the base grating suite. The approach is to intercept the full-band light from a small
field and process it with a FTS before sending it to the grating modules for detection. This
ensures that the basic sensitivity to spectral lines provided by the R ¼ ν∕δν ¼ λ∕δλ ¼ 300
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detector bandwidth is preserved. The system can be considered as an extreme implementation of
a band-limited FTS with many output bands.

The baseline design has a 30-cm physical throw providing 2.4 m of optical path difference
(OPD) between the arms of the interferometer. This provides a wavelength-dependent maximum
resolving power of 43; 000 × ½112 μm∕λ�, a good match to expected linewidths of the HD 112 μm
transition in protoplanetary disks (seeOrigins study report, Sec. 1.2.2.5). Shorter FTS scans can be
employed; this reduces R, but the 1∕λ dependence is always present since the single FTS scan is
common to all six bands. The collimated beam diameter is 8 cm, which ensures divergence
(diffraction) is not a concern for the FTS operation, even at long wavelengths. The long-extra

Fig. 3 Optical layout for the OSS interferometer. Light is intercepted in the converging beam from
the telescope and is collimated with a diameter of 8 cm. After processing by the interferometer, the
light is reinserted into the original light path from the telescope to the grating modules. The inter-
ferometer is engaged with a sliding stage containing POM1 and POM4. It only accesses a small
portion of the grating slits as it is designed primarily for single-source or small-field measurements.
On the right, the mirrors are numbered. The single moving stage carries mirrors 11, 12, 15, 16, 23,
24, 27, and 28. A detail not depicted in this figure is the retroreflectors 17 and 29; they are roof-top
mirrors oriented at 45 deg with respect to the interferometer plane to provide the polarization
rotation (see Ref. 28).

(a) (b)

Fig. 2 Grating module designs for (a) band 1 and (b) band 6, the shortest- and longest-wavelength
bands in OSS. In both cases, the f∕14.4 telescope focus is shown, positioned at the input slit for
band 6, and the conjugate to it for band 1. The grating optical designs and focal-plane dimensions
shown here represent larger focal planes than are currently baselined (pixel count is limited by
readout), and the optics accommodate these, thereby allowing for an upscope. Band 1 in particular
can accommodate a large slit up to 250 beams. The band 6 focal plane uses the four spatial fields
above and below the center, which is obscured by the grating.
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optical path between the pickoff/reinsertion position and the interferometer retroreflectors neces-
sitates pupil reimaging to keep the system compact. This is provided by two sets of confocal
off-axis Cassegrain telescopes that image the telescope pupil to the back of the interferometer.
The FTS architecture is a Martin–Puplett polarizing FTS (Refs. 27; 28), which is optimal for this
application. Relative to other approaches to Fourier-transform spectroscopy, this system uses a
single-input port and single-output port. It requires a static polarizing grid at the input prior to
the beam splitter (e.g., at or near POM2), and a linearly polarized detector, but both output polar-
izations can be used with independent detectors, exactly as is baselined for the OSS gratings. In
each of these output polarizations, the system produces an interferogram with no lost light, unlike
a Michelson architecture, which shares power between two ports.

In addition to the FTS, a second, higher-resolution capability enables line-profile Doppler
tomography measurements of HD and H2O lines around the 112-μm band. (Operation at other
wavebands may be possible, a subject for phase-A study.) This ultra-high-resolution mode is
provided with an etalon (Fabry–Perot interferometer) consisting of a 26-cm long cavity formed
by two partially reflecting mirrors that can be inserted into the beam before the FTS beam splitter.
With a design finesse of 70, the etalon provides a resolving power of 325,000 (0.9 km∕s) at
112 μm, or 200,000 (1.5 km∕s) at 179 μm. The etalon uses the same 8-cm collimated beam
provided for the FTS; however, to allow for beam walk in the etalon without substantial signal
loss, the mirrors must be 14 cm in diameter. The mirrors in the FTS are similarly oversized. Once
in the optical train, the cavity spacing can be changed by ∼1 mm, providing a wavelength scan of
a few orders, which is ample to provide complete coverage. The etalon mirrors will either be
stretched metal mesh with high heritage (Sec. 10), and recent demonstrations ofR ¼ 100;000,29

or more modern patterned silicon,30 which could improve performance for wider band coverage.

3.3 Full Optical Configuration

Since all six grating modules must be fed through their slits at the telescope focus, and these slits
overlap, packaging is an important consideration, and the solution has been obtained through
careful iteration with the observatory mechanical and optical designs. Figure 4 shows views of

FTS Optical bench Etalon

Interferometer B6

B3

B5

ADR

Fig. 4 The OSS optical and mechanical design has at its core, the six grating models (right). Light
from the telescope comes in from the top (blue rays) and is split into the six bands via polarizing
grids and dichroics. The FTS spectrometer (back left) picks off light near the entrance of the
instrument, passing it through the interferometer and then back through the grating modules.
For the highest spectral resolution, an etalon (turquoise tube) is inserted in the light departing
from the FTS.
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the full configuration with all grating bands, the interferometer, and etalon, as well as the field of
view of the OSS in the Origins focal plane.

4 Observing Modes and Detector Requirements

Table 2 summarizes the OSS observing modes. The base R ¼ 300 long-slit spectroscopy mode
can be used for pointed observations of targets of interest and for mapping.

4.1 Pointed Low-Resolution Spectroscopy

OSS is very efficient for pointed observations since the slits from all six bands overlap so that a
complete spectrum is obtained over the full wavelength range simultaneously. For this mode, the
Origins field steering mirror (FSM) will be used to chop a source back and forth with a selectable
throw. For point sources, a distance of three long-wavelength beams or 1 arc min ensures that the
flux in from an unresolved target source is negligible in the off-source position. The chop throw
could extend up to the length of the short-wavelength (band 1) slit—2.7 arc min to ensure full
efficiency with the source always coupled through the slit. Chop frequencies in this mode are
expected to be as low as 0.5 Hz, as the detectors will have good stability to this level. TheOrigins
FSM is capable of faster chopping (up to 10 Hz) if needed to overcome other sources of variability.

4.2 Mapping Modes

The OSS slits can also be rastered around the sky to generate maps. In this mode, the scan rate
must not be so fast that the short-wavelength beams smear when sampled with the finite band-
width of a detector. These modes together with the observatory scan speed, therefore, set a
requirement on the detector time constant τ. As a compromise between agility and the need
to have a reasonable attitude control system, Origins selected 60 arc sec ∕s as the maximum
observatory scan speed. Operating at this maximum speed then requires τ at the short wavelength
(25 μm) of at most 5 ms, which is comfortably within the Origins 3 ms requirement. This maxi-
mum speed allows the low-frequency fknee to be as high as 17 mHz for recovering the large-scale
structure in the intensity mapping experiments. The 3-ms requirement has been comfortably met
with all of the detector options under consideration.

4.3 High-Resolution Mode

With using the FTS, the modulation is naturally provided by the OPD change, so chopping is not
required. A given rate of change of the OPD scan vOPD connects the narrow spectral bandwidth
of each grating channel to a correspondingly narrow audio-band signal via

EQ-TARGET;temp:intralink-;e001;116;83faudio ¼ vOPD∕λ; (1)

Table 2 OSS observing mode summary

Mode Band R FoV Modulation Notes

Low-resolution pointed Full 300 Full slits FSM chop along slit Best pointed-object
sensitivity

Low-resolution mapping Full 300 Full slits FSM or tel. scan Maximum spectral
mapping speed

High-resolution pointed Full 43;000 ×
112 μm∕λ

20-arc
min slit

FTS scan R is tunable via
scan length

Ultra-high-resolution 100 to
200 μm

300; 000 ×
112 μm∕λ

1 beam FTS scan 200 seconds for
each position

Bright source 100 to
200 μm

300 20-arc
min slit

FSM chop Etalon as flux reducer
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so, each R ¼ 300 detector needs only carry a signal in a narrow (R ¼ 300) band about the central
fringe rate. This provides some natural immunity against systematics and instabilities. In par-
ticular, absolute stability is not required over the full scan time. However, to limit the signal loss
to 70% at the shortest wavelength, the fringe rate should be less than ð2πτÞ−1, thus the limiting
scan speed is vOPD;max ¼ λmin∕ð2πτÞ, which is 1.3 mm∕s using the 3-ms time constant. This scan
rate results in a fringe rate at 580 μm of 2.2 Hz, well above the knee frequency. A scan of the full
2.4-m OPD then requires 30 min, if the shortest wavelengths are to be recovered. If the recovery
of the high-resolution information at the shortest wavelengths is not desired, then the scan could
be quicker (e.g., 7 min for a scan recovering wavelengths down to 112 μm). Beam divergence in
the interferometer, combined with practical size limitations of the optical design, limits the field of
view through the interferometer. The high-resolution mode will couple a subslit of ∼20 arc sec

through the interferometer and will be capable of providing the full resolving power over this small
slit. For the longest wavelengths, this corresponds to a single beam, but for all shorter-wavelength
bands, multiple spatial pixels will be available for background subtraction. At the longest wave-
lengths, the background is dominated by the stable cosmic microwave background, and with the
large beam, the variability induced by pointing drifts while looking at a point source will be small,
since the pointing spec for Origins (50 mas for both rms 1 to 10 h drift and >1 Hz jitter) is driven
by the mid-IR transit work and is much smaller than the far-IR beam (1.4 to 19 arc sec).

4.4 Very-High-Resolution Mode

When using the etalon in the nominal design with cavity finesse = 70 and cavity spacing of
26 cm, the order number mFP will be several thousand (e.g., mFP ¼ 4600 at HD 112 μm).
Multiple orders will thus be coupled simultaneously to a single R ¼ 300 grating channel
(e.g., 4600∕300 ∼ 15 at 112 μm), and an FTS scan will be required to resolve these orders from
one another. To fully ensure spectral purity, each step in a high-resolution etalon spectrum will,
therefore, require an order-sorting FTS scan. This scan, however, need only be long enough to
clearly resolve the orders from one another, that is it requires R ¼ 2 ×mFP or 10,000 at HD
112 μm. This is about 1/4 of the total FTS range. Additionally, the etalon is not required to
operate at wavelengths shorter than 100 μm, so the fringe rate constraint described above only
applies to 100 μm. Thus, vOPD;max for the order sorting operation is 5.3 mm∕s, and the order-
sorting scan requires ∼196 s. A 20-position etalon scan will thus require 1.1 h, and a 140-position
etalon scan covering a full free spectral range (the space between orders) to produce a Nyquist-
sampled complete spectrum requires 140 positions, or nearly 8 h. A subject for phase-A study
is the potential to reduce this time with a custom FTS scan, which uses many fewer (e.g., ∼60)
discrete positions sampled sparsely across the scan instead of a continuous or fully-sampled scan.
This is expected work because the FTS scan only needs to discriminate among the few orders
within a single R ¼ 300 grating channel, so aliasing signals from much higher or lower frequen-
cies, as is produced when large steps are taken in the FTS scan, would not couple to the detector.

5 Detector System

Unlike the near-IR and mid-IR detector arrays, far-IR to millimeter-wave detectors suitable for a
mission like Origins do not have a commercial or military application, so developments are led
by science-driven teams, with NASA playing a leading role. Additionally, the cold space tele-
scope presents a uniquely low background, and the OSS per-pixel sensitivity target is two orders
of magnitude below any devices yet fielded (Fig. 5). A less fundamental but equally important
requirement is the format—the OSS has a total of 60,000 pixels in the six arrays and room in
the optical/mechanical design for 2× more if the multiplexing system could allow it within the
thermal constraints. Finally, we note the requirement on dynamic range: the OSS must be
capable of spectroscopy of comets with flux densities up to 5 Jy in the 100- to 150-μm range.
With the OSS telescope, this translates to a factor of 1500 above the zodiacal light background
loading (∼6 × 10−19 W per pixel). The OSS requirements could be met with multiple detector
approaches, and our technology development plan is targeting three related technologies,
each described in more detail in a separate article in this volume. In order of date of invention,
they are as follows.
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Superconducting transition-edge-sensed (TES) bolometers.31 For OSS, the key virtue of the
TES system is the significant heritage. TES arrays have been used in a variety of ground32–35 and
suborbital platforms,36 with total instrument pixel counts around 10,000. TESs have also bene-
fitted from dedicated programs to improve the sensitivity (reduce the NEP) for space spectros-
copy. These programs have demonstrated NEPs as low as 1 × 10−19 WHz−1∕2 at both Jet
Propulsion Laboratory (JPL) and Space Research Organization of the Netherlands.37,38

Pushing to lower NEPs is possible though potentially cumbersome: either base temperatures
must be reduced from the canonical 50 mK, and/or the leg isolation needs to be improved with
more exotic microfabricated structures. Another challenge with a TES system in light of the
formats required for OSS is the complexity of focal plane assembly, in particular the hybridi-
zation with superconducting quantum interference devices (SQUIDs). For both the workhorse
time-domain multiplexer39 and the newer microwave multiplexer,40,41 a SQUID is required for
every detector pixel, a challenge for the large OSS arrays with their small pixel pitch. An alter-
native approach uses a single SQUID at MHz frequencies to read out 100 to 200 detectors, each
detector coupled to an LC resonator.42–44 This latter approach is promising but also requires
advances in resonator packaging and hybridization to scale up to OSS array formats.
Finally, we note that the speed of TES bolometers may be a concern when pushed to the lowest
NEPs, since fundamentally, the time constant scales as the thermal conductance G, and G
must be reduced as the square of desired NEP improvements (NEP ∝

ffiffiffiffi
G

p
). Khosropanah

et al.38 indicated time constants of 0.2 to 0.3 ms for their low-NEP devices, which indicates
that 3 ms is possible at the NEP target for OSS.

Kinetic inductance detectors (KIDs).45 KIDs offer a much simpler implementation by com-
bining the detection with the readout resonator, so that in many cases KID arrays can be imple-
mented with one or two thin film metal layers simply patterned on silicon. KIDs have progressed
rapidly since their inception in 2003.46 They have been and are in use in several ground-based
experiments47–52 and have recently flown on the Olimpo and BLAST-Pol2 balloon experi-
ments,53 performing well. The best reported KID sensitivities are now 3 × 10−19 WHz−1∕2

(a figure that far exceeds the requirements for ground-based or suborbital work), and this has
been demonstrated in at the kilo-pixel formats with good yield and uniformity.54 The principal
challenge for KIDs is to bring down the NEP a further factor of 10 to the OSS target. The most

Fig. 5 Sensitivity [i.e., noise equivalent power (NEP)] requirements for far-IR instrumentation.
Curves show the photon shot noise—improving detectors beyond this produces diminishing gains.
The most demanding application is the Origins spectrometer (OSS), for which the photon NEP is
as low as 3 × 10−20 WHz−1∕2. Horizontal lines show published measurements (see text). A device
that is both sensitive and fast becomes a photon counter, which offers the potential to both enable
shot noise measurements at very high resolving power (e.g., with the OSS etalon) and overcome
potential detector and readout system issues such as temperature and gain instability. Right
shows the graceful degradation of the base OSS sensitivity as NEP increases by a factor of ∼3
from the target.
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straightforward path to lower NEP is to reduce the device volume, and per-pixel area, while
maintaining a reasonable resonant frequency and a design that can efficiently absorb photons.
An approach based on combining high-quality aluminum with small-volume lumped-element
designs55 is promising and works to demonstrate that are underway.

Speed is not a problem since KIDs are intrinsically fast with a fundamental limit given by the
quasiparticle recombination time, a parameter that is dependent on the material and is important
for the sensitivity (longer is more sensitive). It is on the order of a millisecond for the best
aluminum films, thus the devices can readily meet the OSS 3-ms requirement.

Quantum capacitance detector (QCD).56 The QCD is an emerging technology with roots in
quantum-computing devices. As with a KID, the incident photons break Cooper pairs and estab-
lish a density of quasiparticles (free electrons) in a superconducting absorber, and as with a KID,
the device uses radiofrequency (rf)/microwave resonators for multiplexed readout. Unlike a KID,
the QCD absorber and resonator are separate elements, coupled through tunnel junction, so there
is an additional degree of freedom in the design. Single quasiparticle tunneling events change the
capacitance of the resonator enough to shift the frequency by a large fraction of a linewidth, so
are readily detectable. Because a single far-IR photon produces several quasiparticles, each of
which tunnels many times, the system can easily provide shot-noise-limited performance at very
low loading levels. Optical NEPs down to 10−20 WHz−1∕2 have been demonstrated.57 As with
the KIDs, the devices are intrinsically fast, limited fundamentally by quasiparticle recombina-
tion. In fact, the QCD has shown the combination of speed and sensitivity in a far-IR photon
counting mode.58 The principal challenges for the QCD are to push to larger arrays, to dem-
onstrate the uniformity and stability, and to understand the sensitivity when operated at the upper
end of the required OSS dynamic range.

5.1 Readout Electronics

All three of the detector approaches for OSS (as well as for the Origins far-IR imager/polarimeter
(FIP)) will employ an rf/microwave frequency-domain multiplexing readout in which each pixel
is coupled to a narrow-band (Q ∼ 105) superconducting resonator. The warm electronics gen-
erates a comb of frequencies, typically one per pixel, and this comb interacts with the array and
returns to the warm electronics. Each tone incurs a frequency or amplitude shift as it interacts
with its corresponding detector pixel. The returning comb signal is amplified in the cold with two
stages of HEMT (high-electron mobility transistor) amplifiers, one at 4 K and one at ∼35 K.
In the warm electronics, it is then digitized and demodulated to extract each frequency’s infor-
mation. No fundamentally new algorithms or approaches are required; it is just a question of
matching capability with the Origins system resources.

The readout system for OSS and FIP places demands on the Origins system in two ways: the
total electrical power budget (for the processing of the readout datasteam in the warm spacecraft)
and on the 4-K cooling budget (for both amplifier dissipation and conducted loads through the
coaxial lines). At present, the 4-K dissipation of the readout system is the primary limitation on
total pixel count. Up to 2×more pixels could be accommodated if readout dissipation is reduced,
and/or as the current 100% margin on cooling capability is relaxed as the design matures.

For the OSS point design, we adopted the case with the greatest system-level impact: TES
bolometers with the microwave MUX.59,60 Figure 6 shows the approach. The baseline resonator
frequencies are 4 to 8 GHz, and the resonator spacing is 2 MHz. Each readout circuit, therefore,
can process 2000 pixels, and when partitioned into integer readout circuits for the six arrays, the
total number of circuits required for all six is 32. The KIDs and possibly QCDs will also likely
operate at ∼2000 pixels per circuit, but will likely use lower readout frequencies (e.g., 0.5 to
2 GHz). This could translate to lower required power dissipation in the cryogenic amplifiers,
allowing more circuits and larger arrays.

The warm side approach is described more fully in the Origins Technology Development
Plan. The baseline uses the new Xilinx rf-system on chip (SoC),61 which integrates the analog to
digital converters (ADC) with programmable digital signal processing logic [floating point gate
array (FPGA)-like] in a single chip based on 16-nm-gate complementary metal-oxide semicon-
ductor transistors. A single chip provides eight channels, each capable of processing 2 GHz at
12 bits depth, and the associated waveform generation capability. When compared with our
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existing 500 MHz (0.5 GHz) single-channel FPGA-based systems now in use, the new rfSoC
represents ∼8 × ð2∕0.5 GHzÞ ¼ 32 times the processing capability. Abaco released a board with
this chip in late 2018. Initial power dissipation estimates for this board are 50 W at full utilization.

For the system design, OSS uses this power dissipation fiducial of 50 W per 16 GHz of
information bandwidth for the ADC and digital spectrometer logic. This is a conservative
estimate—while neither of these existing systems are flight-qualified, mixed-signal application-
specific integrated circuits, which integrate ADCs and signal processing, have been developed
for flight implementation of similar applications,62 and these systems typically have lower power
dissipation than their programmable-logic counterparts.

5.2 Detector Technology Development Plan

The heritage of the OSS detector system and its path to flight readiness is detailed in the Origins
Technology Development Plan,63 a supplement to the full report. In this, we propose a 7-year
program beginning in 2021 designed to dovetail with the flight implementation program begin-
ning around 2025. The program serves both OSS and the imager-polarimeter FIP. It will achieve
technology readiness level (TRL)-5 (performance at representative array/multiplexing scale) in
2025 and TRL-6 (with environmental qualification) in 2027. The strategy is to pursue two tech-
nology paths, TES bolometers, and KIDs, and to also fund promising lower TRL technologies
such as the QCDs with ∼20% of the program budget. This approach is chosen to mitigate
mission risk of inadequate detector development in time for mission implementation. Unlike
a traditional grant-based program, we will implement a review and progress assessment program,
so that a technology that meets Origins requirements can be chosen as early as possible. For
example, if during the initial phases of the program, one of the lower-TRL technologies takes off

Fig. 6 The readout system consists of 32 circuits, each carrying 4 GHz of information bandwidth.
Detectors are coupled to microresonators, 2000 of which can be read out in each line. On the warm
spacecraft side, electronics create the waveform that interacts with the array, and then digitizes
and analyzes the return waveform to extract phase shifts that encode the optical power on the
detector. This basic approach accommodates all viable detector technologies under the develop-
ment for Origins.
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and appears more likely to achieve the requirements than KIDs or TES bolometers, then resour-
ces can be redirected to maturing that technology.

5.3 Data Rate

Far-IR direct detectors must be sampled continuously, and the OSS data rate is determined by the
pixel count (60,000), sampling rate, and required bit depth. The detectors will be sampled at
200 Hz to support an electrical bandwidth of 100 Hz, a comfortable factor of 2 above the
50-Hz 3-dB frequency of the detector with its 3-ms time constant. 12 bits is sufficient to capture
the detector’s dynamic range under which it is photon noise limited if a logarithmic scaling
is used. The data rate to ground without any compression is thus 144 Mbits∕s (where
1 Mbit ¼ 1;000;000 bits), a figure which can be accommodated by the emerging optical com-
munication systems. In the high-resolution modes, since only a small fraction of the array is
used, the rate could be smaller, but we expect that the grating data may be valuable for other
purposes during these observations (e.g., for monitoring background and taking potentially
serendipitous measurements along the slit).

6 Expected Performance

Figure 7 shows the expected OSS low-resolution sensitivity in the far-IR and submillimeter as
well as the spectral survey speed. The OSS instrument is the suite of R ¼ 300 grating with the slit
lengths as designed (Table 1)

)

)
(

(

( ) ( )

(a) (b)

Fig. 7 OSS grating mode sensitivity. (a) The sensitivity in Wm−2 for a single pointed observation,
including a conservative assumption about background subtraction (see text). OSS covers the full
25 to 588 μm band, simultaneously. The SPICA/SAFARI-G7,8 curve refers to the studied configu-
ration: a 2.5-m telescope with a suite of R ¼ 250 grating spectrometer modules with 5 spatial
beams, and detectors with NEP ¼ 2 × 10−19 WHz−1∕2 but no other margin (expect detector NEP
around 1 × 10−19 WHz−1∕2). GEP9 denotes the galaxy evolution probe concept, a 2-m cryogenic
telescope with a suite of R ¼ 200 wideband spectrometers with 40 to 70 beams, and a detector
NEP of 1 × 10−19 WHz−1∕2. ALMA sensitivity refers to an R ¼ 1000 (300 km∕s) bin, and the
survey speed incorporates the number of tunings of the 16 GHz total bandwidth to cover a 1:1.5
fractional band. Galaxy spectra assuming L ¼ 1012L⊙ at various redshifts are overplotted using
light curves (with continuum smoothed toR ¼ 300). (b) The time for a blind spatial–spectral survey
reaching a line-flux depth (5σ) of 10−19 Wm−2 over a square degree. This survey time metric
scales as the sensitivity squared over the instantaneous field of view (slit width × length for OSS),
and for large maps, background subtraction should be a negligible effect. This shows the 6 to 10
orders of magnitude speed advance available with Origins OSS for survey measurements.
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6.1 Sensitivity Model

The relationship between the detector performance and the estimated on-sky sensitivity are sim-
ilar to what has been obtained in ground-based grating spectrometers Z-Spec64 and ZEUS,35,65

providing confidence in the estimation. The model assumes a 5.9-m-diameter telescope
with 72% aperture efficiency to a point source, and 25% total instrument transmission (in a
single polarization) for the base low-resolution mode. Detectors are assumed to operate with
NEP ¼ 3 × 10−20 WHz−1∕2, a figure which has been demonstrated in the lab with the QCD.
The line-detection sensitivity includes a factor of

ffiffiffiffiffiffiffiffi
Neff

p
, the effective number of pixels used

to optimally extract the line flux. For the OSS grating modules, which have detectors sampling
and the spectrometer intrinsic resolving power comparable at R ¼ 300, Neff ∼ 1.6, this adds a
factor of 1.26.

6.1.1 Sensitivity margins

In addition to the factors noted above, the sensitivity estimates include two forms of margin:
(1) the model includes a factor of 1.7 above the calculated sensitivities values assuming a total
slit-to-detector efficiency of 25%, this can allow for a combination of lower efficiency and/or
poorer detector sensitivity. (2) The point-source staring sensitivity (which employs chopping of
the Origins FSM) includes a factor of

ffiffiffi
2

p
penalty. This would be required if the source is only

observed half the time or if the background is only measured with a single spatial mode. But
since the baseline approach is to chop the source along the slit and measure the background with
the full slit, this factor does not apply in the current design, so it represents margin. Additionally,
we note that as part of the Origins study, all science cases and time estimates are based on a
performance that is 2× poorer than the calculated sensitivity values, which themselves include
the factors described above.

6.1.2 Detector sensitivity

The target detector NEP for OSS is 3 × 10−20 WHz−1∕2, but because the system is strongly
background limited at this value, some degradation in detector sensitivity can be accommodated
without greatly impacting sensitivity. Although the sensitivity depends on wavelength and sight-
line through the zodiacal dust and cirrus dust, Fig. 5 shows an example calculation for the North
Ecliptic pole at 100 μm. Here, a fallback in the detector NEP from the target to a much easier
1 × 10−19 WHz−1∕2 (already demonstrated with TES bolometers by multiple groups) results in
only a factor of 1.8 degradation in sensitivity. More typical sightlines will see smaller effects.

6.2 Bright Sources and High-Resolution Modes

Further applications of the sensitivity model are shown in Fig. 8. Bright sources add shot noise
and degrade the sensitivity in a straightforward manner. For spectroscopy of solar-system
objects, OSS must permit observations of sources up to 5 Jy at 128 μm without saturation.
This translates to a dynamic range from the Zodi background loading of 1000, a requirement
on the detector system.

For the high-resolution modes, the estimated sensitivities include the additional signal loss
(52%) and loading from the 4.5-K FTS optics, and another factor of 0.25 transmission through
the etalon (49% due to Ohmic loss in the mirrors × an estimated 75% due to beam walk-off in
the large cavity). The very-high-resolution mode requires stepping the etalon to create a full
spectrum, an additional sensitivity factor that is not included in the curves in Fig. 8.

7 Thermal and Mechanical Design and Resource Requirements

Table 3 summarizes the top-level resource requirements imposed by the OSS on the observatory.
Mass estimates carry contingency and margin from the current-best-estimate (CBE) values;
structures are designed to accommodate these margined values.
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Table 3 Top-level resources for OSS

Attribute CBE CBE + contingency + margin

Mass (kg) Total 624 889

Interferometer (including bench) 193

Grating spectrometers (incl. structure, arrays) 190

ADR and thermal straps 25

Miscellaneous cold mounting and fixturing 54

Wiring harnesses, cold amps 86

Warm electronics and housing 77

Power (W) Average in operation 558 725

Peak in operation 945 1228

Standby/safehold 188 244

Data rate Readout, raw 1.5 Tbps n/a

Science data (Mbps) 146 190

Heat rejection to 4 K (mW) 26 63

Note: Mass is allocated a 14% contingency plus 25% margin (held at observatory level). Power and data rate
are allocated 30% margin at system level.

High-res mode sensitivities, 5σσ 1 h

Blue is 3 ×

×
×

10−20 W Hz −1/2

Ealon sensitivities require an 
additional scanning penalty to be 
applied to these curves: e.g. for 
16-

4
element scan or 8 for 60-

element scan which would provide 
complete coverage.

f

(a)

( )

(b)

Etalon with perfect (photon counting) detector.

Base grating sensitivity

FTS sensitivity with its penalty

Etalon sensitivity, faint source

Etalon w/ 100 mJy source

Etalon w/ 1 Jy source

Fig. 8 (a) Sensitivity degradation of the base grating mode in the face of photon noise from
bright sources. Also plotted for comparison are sensitivities possible with possible optimized
heterodyne receivers operating near the quantum limit (dark green) and with T sys ¼ 1000 K
(brown), assuming a linewidth of 3 km∕s. (b) The high-resolution mode sensitivities. The FTS has
a sensitivity penalty due to on-source time and losses. The etalon compounds this with additional
losses and the etalon must scan, a factor not included in these plots. The etalon is baselined to
cover the 100- to 200-μm range, with coverage over the full band as a goal, but achieving the
etalon sensitivity beyond 200 μm will require careful attention to stray light from the instrument
itself.
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7.1 OSS Thermal Design

The interferometer optics operate at the observatory-provided base temperature of 4.5 K, but the
grating modules as well as the band separation elements (polarizing grid and dichroic filters) are
all cooled further to ensure that their thermal emission does not impact sensitivity. In particular,
the potentially lossy grid and dichroic filters before the grating slits (termed the band separation
optics) must be cooled to below the microwave background temperature to ensure that they do
not add background. The gratings modules themselves need to be below 0.9 K—at least at the
long wavelengths—to ensure that the integrated power through the bandpass filter with the full
native detector étendu (AΩ) does not saturate the detector or degrade the noise equivalent power.
These requirements are met with a continuous adiabatic demagnetization refrigerator (CADR),
which stages from the observatory-provided 4.5-K system. A schematic is provided in Fig. 9.
The CADR is adapted from the high-heritage Goddard Space Flight Center (GSFC) designs of
the Hitomi ADR and subsequent technology advances.66–68 It uses 7 salt pills to provide 3 con-
tinuously-cooled stages: at 1.5 K (for the polarizing grid and dichroic filters), 0.7 K (for the
grating spectrometer enclosures), and 0.05 K (for the focal plane arrays themselves). A key
advantage of the ADR approach is the high Carnot efficiency, and the CADR heat rejection
is only about half of the 4.5-K budget even though it is designed to provide 100% lift margin
(that is 2× what is needed) at all of its actively cooled stages. Further information is provided in
the Origins Technology Development Plan. A suspension system has been designed together
with the cooling system; its schematic is included in Fig. 9. The band separation optics and
the grating optics modules are suspended kinematically from 4.5 K with bipods made of titanium
15-3-3-3, a low-thermal-conductivity alloy. Although composites offer lower thermal conduct-
ance at these temperatures, the use of metal eliminates a potential source of water contamination
curing cool down. For the grating optics modules cooled by the 0.7 K stage, the titanium sup-
ports couple directly from 4.5 K mechanically, but heat is intercepted at the strut midpoints by
the 1.6-K stage. Strut dimensions are tuned for each band’s mass, ensuring a resonant frequency
that satisfies a standard mass acceleration curve. Inside each grating module, the focal plane
assemblies are also mounted kinematically with Ti-15-3-3-3 bipods, in this case designed to
provide resonant frequencies of at least 100 Hz.

Table 4 summarizes the calculated heat load and available lift with the cooler for each of the
three OSS cooling stages. The dominant load on the sub-4K OSS-cooled stages is the conducted
loads through the mechanical suspension. Wiring parasitics are negligible because superconduct-
ing cables are used. The 4.5-K situation is more challenging relative to the adopted allocation
from the observatory, as this stage must accept the loads from the nonsuperconducting harnesses,
and 4.5 K houses the first stage low-noise amplifier. The 0.38-mW per amplifier × 31 amplifiers
correspond to commercially available devices operating at up to 8 GHz, but the team expects

(a) (b)

Fig. 9 OSS thermal architecture. (a) The seven-stage continuous ADR is actually a five-stage ADR,
similar to that used in the FIP instrument, and a two stage ADR. The ADRs are controlled from
a single ADR controller on the warm side of the spacecraft. (b) Low-thermal-conductivity titanium
bipods mount the spectrometer boxes from the optical bench, and the focal plane assemblies inside
the spectrometers. These comfortably support launch loads, yet enable the 50-mK cryogenic
system; no special provisions are required to survive launch. Though numerous, the cooling straps
from the ADR are the size of large gauge copper wires and weigh a combined total of 1 kg.
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improvements in amplifier power dissipation will be possible by the time Origins is built.
A straightforward descope to ease this aspect is to not operate all six bands simultaneously.
(Parasitic conduction in harnesses is book-kept at observatory level, but is much smaller than
the amplifier dissipation.) The design includes thermal straps made of pure annealed copper for
all stages, sized for the load, and distance required. These copper straps along with the indium
used for thermal connections total ∼8 kg for OSS.

7.2 Mechanical Approach

Each of the OSS grating modules and the interferometer bench are discrete optomechanical
elements that will be fabricated and tested independently and then mounted kinematically
in the full instrument. They can be internally aligned and are subjected to environmental
testing as units before being integrated into the full instrument. Aluminum spectrometer optical
elements (mirrors and gratings) are the baseline, but the structural benches are baselined as
beryllium to increase stiffness and reduce mass.

7.3 Mechanisms

OSS has four mechanisms tabulated in Table 5 with their travel and accuracy requirements Me1
is the FTS interferometer scan mechanism that moves the rooftop mirror carriage. The required
accuracy is driven by ensuring that in a given sample in the interferogram, the power uncertainty
due to OPD error is less than the uncertainty due to the other noise sources (only photon noise in
the optimal case). Quantitative assessment requires simulations, as was done for Herschel
SPIRE,69,70 a subject for phase-A study. But a key point is that for random errors in OPD, the
required accuracy scales as λ and the ratio ðNEP∕ ffiffiffi

τ
p Þ∕P. With its lower background, the latter

ratio is more than 4000× greater for OSS than for SPIRE for a given sample time. We, therefore,
expect random errors will be much less stringent for OSS than for SPIRE, even with the shorter
wavelengths. Pending the simulation work, we adopt for the purposes of the study a value of λ∕4
in OPD, which is more stringent than the scaling would suggest. This translates to 0.8 μm in
physical displacement with the 8× path folding. In addition to verifying this, a key subject for
phase-A simulation work is to assess the requirements on nonrandom (systematic) errors. These
will have to be controlled to a greater level to avoid impacting long observations. The angular
runout requirement is given by the need to maintain good pupil overlap in the interferometer over
its full scan length.

Table 4 OSS cryogenic stages: thermal loads and available lift

T (K) Source Heat load Total Capability Margin (%)

0.05 (focal planes) Harness conducted 0.65 μW 2.67 μW 6.0 μW 125

Dissipation 0.67 μW

Suspension conducted 1.35 μW

0.7 (grating modules) Harness conducted 6.5 μW 111 μW 292 μW 163

Suspension conducted 104 μW

1.5 (bench and intercepts) Harnesses conducted 0.04 μW 2.11 mW 4.24 μW 101

Bench supports conducted 0.96 mW

FPA supports 1.11 mW

4.5 (from observatory) Amplifier dissipation 11.8 mW 26 mW 63 mW 144

Mechanisms 1 mW

ADR heat rejection 13 mW
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Me2 is for the interferometer insertion; it simply moves the carriage containing the pickoff
and reinsertion mirrors into the beam. Position accuracy is not a strong constraint, but this car-
riage must have an orientation accurate to 20 arc sec to ensure the interferometer pupil matches
the telescope pupil. Me3 scans the etalon, it needs only cover a couple × the free spectral range
(FSR) at the longest wavelength (FSR ¼ λmax∕2), so a total of 600 μm. However, it must provide
translation knowledge to 0.2 μm, ∼1∕4 of a resolution element at 112 μm. Furthermore, it must
maintain parallelism to 0.3 arc sec to ensure that the cavity finesse is not impacted. Finally, Me4
allows the etalon assembly to be inserted and removed from the interferometer beam. Here, the
positional accuracy is not critical, but the etalon must be oriented to within 10 arc sec once
inserted to avoid beam walk-off in the etalon. The FTS and etalon scan mechanisms and the
associated lubricants are specified for a minimum of 10 years and one million cycles, ample to
accommodate any conceivable combination of observations over Origins’ mission life. The
insertion mechanisms for the FTS pickoff and etalon are specified for 2000 cycles, a figure which
is likely ample, but which should be revisited in phase-A as observing scenarios become clearer.

Detailed mechanism designs will be undertaken in phase A, but Fig. 10 shows an approach
that meets the FTS translation requirements and was used in the study. This dual-stage paral-
lelogram flex-band type system has essentially no friction. The pictured prototype was devel-
oped at NASA Goddard71 for use in Herschel SPIRE;69 it will be scaled up by a factor of 3 to
achieves the required OSS linear travel of 300 mm. A superconducting linear servo motor has
the required precision and low losses allowing for a dissipation of <1 mW. For the etalon,
a piezoelectric inchworm actuator will be used. Position, to the accuracy required, will be read
out with either a modified Kaman DIT72 or a modified Mad City Labs NanoAlign-3;73 both
product families have some flight heritage. The launch locks will be actuated using typical
nonexplosive actuators such as the NEA 9100. For the etalon and FTS insertion mechanisms,
which are used infrequently, a four-bar linkage connected to a brushless dc motor is used.

8 Instrument Control

The OSS control schematic is shown in Fig. 11. Although the OSS is large and has two powered
spectroscopic modes, each motion requires only a single degree of freedom actuation with posi-
tion encoded, similar to what was used for the Herschel SPIRE spectrometer.26 Similarly, while
the detector technology is different, the detector bias and readout at a high-level function similar
to those of the bolometer systems in SPIRE and the high-frequency instrument on Planck.74,75

Table 5 OSS mechanism requirements

# Purpose Motion Accuracy Approach

Me1 FTS scanning Move 20 kg mass:
(a) 100 mm at 10 mm∕s
and (b) 300 mm at
300 μm∕s

0.8 μm knowledge,
1.6 μm control, angular
runout of 1.6 arc sec

Multi-arm flex-band (Fig. 10)
with superconducting linear
servo

Me3 Etalon fine scan Move one etalon mirror
0.5 μm every 10 s,
total throw of 600 μm.

0.2 μm knowledge and
0.4 μm control. Angular
runout <0.3 arc sec

Piezoelectric inchworm;
position via Kaman
differential impedance
transducer or Mad City
Labs NanoAlign-3

Me2 FTS pickoff
engagement

Move FTS pickoff and
reinsertion mirrors into
beam

Position to ∼1 mm,
oriented to within
20 arc sec

4-bar linkage w/brushless
dc motor

Me4 Etalon insertion Move etalon assembly
into inteferometer beam

Translation control to
2 mm, oriented to
10 arc sec

4-bar linkage w/brushless
dc motor

Me-L Launch locks for the above N/A Non-explosive actuator,
e.g., NEA 9100
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They are steady-state systems, collected passively, with no real-time decision-making or analysis
required on the spacecraft. The system is thus in family with SPIRE and other astrophysics
instruments with a modest number of discrete mechanisms. The baseline design has a main
electronics box (MEB), which includes a number of specialized control boards and a LEON3
CPU. The system includes all critical features as follows.

• Mode management (allowing reboots with software updates, standby, calibration, and
the various science observing modes).

• Instrument support (command processing, data collection, and support for firmware
updates).

Fig. 11 Block diagram of OSS instrument control architecture. HEMT refers to the cryogenic
microwave amplifiers (high-electron mobility transistor), and LVPC stands for low-voltage power
converter used to bias the amplifiers. The MEB houses the CPU, detector bias and acquisition
electronics, and control electronics for the mechanisms. Given that the modes are built up primarily
from pre-existing elements (e.g., FTS scan), the software reuse is estimated at 85%.

Fig. 10 Flex type mechanism for use with the OSS FTS. This mechanism is free of friction, can be
operated in any orientation, and has a stroke of 10 mm. For OSS, this would be scaled up by
a factor of 3.
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• Mechanism control. FTS and etalon scan are operated with closed-loop control with
encoder feedback at 1 kHz. Interferometer insertion and etalon insertion are open-loop
commanded, with positions verified by microswitches.

• Power distribution.

• Some degree of on-board autonomy: limit checking, some processing command sequen-
ces, failure corrections.

Flight control software for the OSS is straightforward, and we have identified no technical
risks. It will be a real-time system based on proven JPL or GSFC in-house or commercial off-the-
shelf systems. The system will have an estimated 60,000 total lines of code of which ∼85% will
be reused from existing flight instruments, based on the similarity of the individual elements of
the OSS system (individual mechanisms, high-level data acquisition and storage, and housekeep-
ing) to those used on other flight instruments such as SPIRE. As discussed in Sec. 5.1, new
elements required for the microwave multiplexing (waveform generation, analog-to-digital con-
versation, and digital demodulation) will be handled in dedicated programmable logic fabric on
the rfSoC and are outside of processor and flight software. We estimate that the system has 50%
processor margin with the LEON-3 CPU.

9 Alignment, Integration, Testing, and Calibration

9.1 Optical Alignment

The grating modules can be aligned readily either by the vendor or by instrument team
members—the elements within each grating module should be aligned sufficiently just from
machining tolerances. A good example of this approach is the aluminum grating spectrometer
modules of the Spitzer Infrared Spectrograph (IRS), which had even tighter tolerances due to the
shorter wavelengths. An aspect not used on Spitzer, but potentially useful for OSS is the fact that
the grating module optics, along with the large, field-filling arrays, allows adjustment of the slit
position by several beams with respect to the rest of the optics to obtain a desired slit position
relative to the grating modules box. Each slit opening is an independent piece that can be adjusted
before being clamped into position. The OSS requires that the six grating modules be positioned so
that their slits overlap (field alignment), and that they each have their pupil aligned with the tele-
scope pupil (pupil alignment). Meeting the first requirement consists of simply moving the grating
module (or, for small adjustments, moving the slit openings) so that the slits align in position, using
a telescope simulator which produces a point-source image. The second requires tipping/tilting the
grating modules about the slit positions so that they point to a common pupil in the simulator.
These tests will have to be performed with a cryogenic mounting of the grating modules.

Alignment of the interferometer begins with a self-alignment ensuring that the collimated
beam remains centered as it traverses the mirrors and retroreflectors, and that the two sides
of the interferometer recombine with good overlap. This should be possible to do warm if good
practices are used in the machining and assembly of the FTS bench (uniform materials and
thermal stress relieving), but it must be verified cold. Aligning the interferometer with the grating
system requires positioning the interferometer insertion mirrors to provide an extremely well-
collimated beam to permit the etalon operation. Here, the distance along the optical axis from the
telescope is important, and this may require a cryogenic test. The interferometer must then have
its pupil aligned with the telescope pupil; this consists of tilting the interferometer about the
insertion mirror. Finally, the reinjection mirror must then be adjusted to ensure the interferom-
eter’s pupil aligns with those of the gratings. The team expects precision machining of the inter-
ferometer insertion/reinjection mirror pair as a single carriage will result in having no need to
make adjustments. Ultimately, a cold test must be done to validate the results of these alignment
activities. The two key success criteria are: (a) transmission efficiency from the OSS front focus
(corresponding to the telescope focus) through the interferometer to the detectors, likely with
a chopped thermal load viewed through a small aperture and (b) spectral purity (especially for
the etalon) verified with a narrowband source such as a far-IR laser or THz multipler source.

With this full system aligned in the flight truss, which is brought as a unit to the telescope, a
full alignment check of all elements should not be required on the observatory. Simply verifying
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pupil overlap (also known as pupil alignment) of the grating modules with the observatory
should be sufficient since the Origins telescope has sufficient actuation authority to adjust the
telescope boresight and focus depth with respect to the instrument using actuation at both the
secondary (6 degrees of freedom) and FSM (2 degrees of freedom).

9.2 Test Facilities

OSS will require cryogenic test facilities, but they will be straightforward and pose no particular
technical challenges. The detector arrays and individual grating modules will require a refrigerator
with 2-K cooling of volumes on order 40 × 40 × 50 cm3, with cold fingers allowing the arrays to
cool to 50 mK. This will verify basic sensitivity and stray-light rejection at the individual module
level. Such systems are available commercially. Examples include the closed-cycle dilution refrig-
erators made by BlueFors, Oxford, and Leiden Cryogenics. For the multi-spectrometer alignment,
a larger cryogenic test is required, simultaneously encompassing 1.5 m to accommodate the optical
bench and at least three spectrometers. However, for this test, the full structure only needs to be
cooled to ∼30 K, as this is sufficient to incur all coefficient of thermal expansion related alignment
effects. Cold fingers are required at 250 mK to allow the detectors to operate in a high-background
mode and verify alignment. Full sensitivity is not required. These tests can be carried out in one of
the existing thermal-vacuum chambers at JPL or GSFC.

9.3 Calibration

In considering calibration uncertainties for measurements where the radiometric signal to noise
is sufficient, we expect to achieve ≤1% relative measurement accuracy and ≤5% absolute flux
calibration. Every detector pixel in the OSS spectrometer modules will have four key measure-
ments generated in integration and test in a dedicated low-background spectrometer testbed that
can house any of the grating modules. (1) Sensitivity will be measured with a temperature-
controlled slit-filling load (blackbody source). (2) Spectral response described below.
(3) Optical efficiency is obtained from the response as the slit-filling load is elevated in temper-
ature, by comparing blackbody curves integrated over the measured bandpasses. (4) Beam shape
is measured via an external (to the testbed) chopped warm source rastered in the far field of
the grating modules. This is essentially verification to reveal any problems with grating module
optics so they can be fixed ahead of full integration. Tests 2 and 4 will couple the grating module
to outside the testbed, so will require substantial blocking filters to stay within the dynamic range
of the OSS detector arrays—this can be accomplished with a combination of dielectric blockers
and resonant mesh filters.

As for Herschel and Spitzer, radiometric scientific calibration is ultimately tied to astronomi-
cal sources. Given our experience with Herschel, we do not believe an on-board calibration
source is needed, and therefore, the baseline OSS design does not include one. However,
we will study this question further in phase A.

A key aspect unique to the grating spectrometer is the need for accurate measurement of the
spectral response of every detector. This may reveal low-level grating ghosts and other peculiarities
that do not impact sensitivity, but could be important in deep observations of sources with a large
spectral dynamic range (very bright lines and faint lines or faint lines on a bright continuum). We
will measure spectral profiles with a dynamic range of at least 1000 and a resolving power of
at least 3000 × ð100 μm∕λÞ using a long-path FTS, with the spectral scale anchored by spectral
standards such as absorption-cell measurements and a far-IR laser. Once the OSS interferometer is
integrated with the instrument, these profiles can be verified with the OSS FTS.

We do not expect the wavelength calibration and spectral profiles to change from the lab to
flight, since there are not moving parts, but the on-board FTS will continue to be a benefit for
OSS through the mission, as it will provide long-term tracking of the grating system spectral
response in the unlikely event that something changes in a grating module. The etalon wave-
length scale will be established during integration with a far-IR laser and/or a narrow-band
THz source and confirmed and periodically monitored on orbit with astronomical line-emitting
spectral standards observed on Herschel and Stratospheric Observatory for Far-Infrared
Astronomy (SOFIA) such as IRC+10216.

Bradford et al.: Origins Survey Spectrometer: revealing the hearts of distant galaxies. . .

J. Astron. Telesc. Instrum. Syst. 011017-21 Jan–Mar 2021 • Vol. 7(1)



10 Heritage and Risk Management

The heritage of the OSS detector system, and its path to flight readiness, is outlined in Sec. 5 and
detailed in the Origins Technology Development Plan. Here, we consider the heritage of the
optical elements: the gratings, FTS, and etalon. The grating modules are straightforward bolted
aluminum systems using diamond-machined mirrors and gratings. They have no moving parts.
Similar approaches have been employed on the Spitzer infrared spectrograph [Fig. 12(a)] at even
shorter (more demanding) wavelengths. FTSs have been used at these wavelengths in space in
multiple instruments, including the Cosmic Background Experiment (COBE) and the SPIRE
instrument on Herschel [Fig. 12(b)]. SPIRE’s FTS also used multiple sets of rooftop mirrors
on the moving stages to provide pathlength amplification.

Scanning Fabry–Perot etalons have been used successfully on European space agency’s
Infrared Space Observatory (ISO) mission; the short-wavelength spectrometer (SWS) and the
long-wavelength spectrometer on ISO had scanning etalons [Fig. 13(a)] that were operated in
front of the diffraction gratings. These etalons had higher finesse (F = cavity quality factor
Q ∼ 200) for ISO SWS than the OSS (baseline F ¼ 70). They also operated at shorter wave-
lengths. Both these differences created more stringent requirements on the mirror flatness and
parallelism than will be levied by the OSS. OSS does require a larger clear aperture than ISO,
but this is comparable to that used on the ground-based submillimeter instrument SPIFI.77–79

Fig. 13 Heritage of scanning etalons for far-IR astrophysics: (a) the dual etalon used in the ISO
(credit Max Planck Institute for Extraterrestrial Physics, Garching). (b) An etalon developed
at Cornell for use on SOFIA.29 It has demonstrated R ¼ 100; 000 at 112 μm, using an order of
2000 and a cavity finesse of 50. OSS will use a similar finesse, but larger cavity spacing.

Fig. 12 Heritage for the basic approach of the OSS elements grating and FTS elements. The
bolted-aluminum OSS grating spectrometer uses the same approach as the Spitzer infrared
spectrograph from Ref. 76. (a) Its four wideband modules and (b) the Fourier-transform module
path-folding approach and mechanism use the same approach as in the Herschel SPIRE
instrument.26
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Finally, new high-resolution far-IR etalons are now being built for the HIRMES instrument on
SOFIA [Fig. 13(b)],29 which are good proxies for the OSS etalon in terms of wavelength and
cavity finesse.

In developing the concept, we have identified the most important risk areas for OSS and
developed approaches to their mitigation.

1. The most important risks for OSS are in the detector system, in particular the sensitivity
and yield at large array format, and susceptibility to effects on orbit such as cosmic rays.
These aspects are addressed with a dedicated technology development plan63 (see Sec. 5)
in advance of the flight program.

2. Stray light, magnetic susceptibility, and rf power are known potential problems with cryo-
genic superconducting detectors. The stray light risk is mitigated with the design; the
grating spectrometer assemblies are light tight with only the slit as entrance points; they
can be tested independently with radiative sources (loads) outside the slit to verify that no
excess power is coupled to the detectors beyond what is expected in-band from the spec-
trometer optics. The magnetic susceptibility risk, while often a problem in ground-based
and suborbital instruments and important to understand early in the design cycle, is also
straightforward to assess and mitigate for OSS. The ambient magnetic field at L2 is much
smaller than Earth’s field, so the most important field sources are those on board the
Origins spacecraft (e.g., the ADR magnets), but these will be shielded. Their effect can
be bounded cleanly because field strength decays as 1∕distance3. The susceptibility of the
focal plane packages can be separately measured with ac-modulated Helmhotz coils in
the lab; and the susceptibility can be shown to be 1 to 2 orders of magnitude lower that
what would impact scientific performance. The rf power may be most challenging among
these if bolometers are used. rf power can couple to bolometers directly, generating an
analog of stray light, and the rf environment can depend on details of the wiring harness
and other observatory-level aspects, which are hard to test prior to instrument integration.
Here again the grating module boxes help provide a form of mitigation—they will be used as
approximate Faraday cages sealed except for the slit entrance), with filtered electrical feed-
throughs for all bias and readout lines. Additionally, the team will carry out early tests with
flight-like cables, electronics, and other identified Origins rf sources (or suitable proxies),
at the individual OSS grating module level in phase C, prior to integration.

3. A final class of system-level performance risk is the failure of mechanisms. The impact of
this risk is limited, since much of the science is done in the grating-only modes, which do
not require any moving parts with the exception of the Origins steering mirror (FSM) for
some modes. The likelihood of this risk materializing is to be mitigated using high-
heritage approaches, as well as early design, prototyping, and qualification including
cryogenic testing. The FTS insertion carriage will be designed to fail in the “in” position,
so that the interferometer can be used even if the mechanism fails. (The base grating mode
is still operable in this condition because the slits are larger than the inteferometer pickoff
mirror.) By the same principle, the etalon insertion mechanism is design to fail in the “out”
position, to leave the FTS path clear.

11 Summary

Spectroscopy in the far-IR offers tremendous opportunity for answering fundamental questions
in galaxy evolution and planet formation. In far-IR spectroscopy, a revolution in capability is
available with an actively cooled telescope and large-format far-IR detectors. Origins and
the OSS are designed to bring this to fruition. OSS is a suite of six long-slit R ¼ 300 grating
modules, which combine to cover the full 25 to 588 μm range simultaneously, operating with
sensitivity approaching the photon background limit in each of a total of 60,000 pixels in the six
arrays. The wideband grating modules are simple machined aluminum structures with no mov-
ing parts, the same approach as that used on the Spitzer IRS. OSS will be a powerful mapping
instrument, providing full-band spectra of millions of galaxies in unbiased surveys. Additionally,
to enable detailed studies of individual objects, an interferometer can be engaged to process light
from a piece of the grating field of view with an FTS, which also covers the full OSS band and
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provides R up to 43,000 at 112 μm. For kinematic studies in disks, an etalon is also provided.
It can be inserted into the interferometer beam to provide 1 to 2 km s−1 resolution over the 100-to
200-μm sub-band. Though large, the instrument is tractable. A detector maturation plan has
been developed and all other technical aspects of OSS have heritage. Our point design which
includes optical, mechanical, electrical, and thermal aspects closes with margin in the Origins
accommodations.
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