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Abstract. We present a comprehensive stray light analysis and mitigation strategy for the
FIREBall-2 ultraviolet balloon telescope. Using nonsequential optical modeling, we identified
the most problematic stray light paths, which impacted telescope performance during the 2018
flight campaign. After confirming the correspondence between the simulation results and post-
flight calibration measurements of stray light contributions, a system of baffles was designed to
minimize stray light contamination. The baffles were fabricated and coated to maximize stray
light collection ability. Once completed, the baffles will be integrated into FIREBall-2 and tested
for performance preceding the upcoming flight campaign. Given our analysis results, we antici-
pate a substantial reduction in the effects of stray light. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JATIS.8.4.048001]
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1 Introduction

The faint intergalactic-medium redshifted emission balloon (FIREBall-2) is a balloon-borne,
ultraviolet (UV) multiobject spectrograph (MOS) designed to observe faint emission from the
halos of galaxies. FIREBall-2 is an international collaboration between the United States
(Caltech, JPL, Columbia University, University of Arizona, and University of Iowa) and
France (Centre National d’Études Spatiales and Laboratoire d’Astrophysique de Marseille).
This suborbital astronomical balloon telescope, jointly funded by NASA and CNES, is designed
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to explore the forefront of modern extra-galactic astronomy through the discovery and mapping
of faint emission from the intergalactic medium and circumgalactic medium (CGM) around
moderate-redshift galaxies (z ∼ 0.7). FIREBall-2 helps to improve our understanding of the vast
diversity of nearby galaxies through the study of galactic feedback, including matter and energy
outflows. By exploiting a convenient balloon window between the atmospheric O2 and O3

absorption bands above 37 km altitude, FIREBall-2 observes line emission in the λ ¼ 1980

to 2130 Å band. FIREBall-2 is uniquely positioned as the only MOS to have ever flown on
a balloon and the only UV MOS currently operating.

The FIREBall optical design is described in more detail in Hamden et al.1 and includes multi-
ple components, as illustrated in Fig. 1. All optical surface labels are defined in the included
table. A 1.2-m diameter siderostat mirror provides field selection and angular altitude control,
directing light to a 1-m parabolic primary mirror. This primary focuses light through a hole in the
siderostat and into the spectrograph tank, which is kept at vacuum to allow the CCD detector to
cool to −105°C. A small field correcting lens is located at the top of the spectrograph tank, where
light from the parabola comes to an intermediate focus. Inside the spectrograph tank, there are
two field correcting mirrors, referred to as FC1 and FC2, which improve the field of view from
10 arc sec (in the original FIREBall2) to allow 4.5 arc sec resolution over the 30-arc min field of
view. At the field corrector focus is a slit mask carousel, which allows one of up to nine masks to
be selected for use in flight. The masks are curved to match the spherical focal plane. Each mask
is custom laser cut for a particular field of view. After the mask, the spectrograph optics consist of
two spherical Schmidt mirrors (SC1 and SC2), a diffraction grating, and two folding flats (FF1
and FF2) for compactness. The detector is a Teledyne e2v CCD201-20, an EMCCD for photon
counting.3 This complex system requires a sophisticated baffling strategy, which we describe in
Secs. 3 and 4.

2 Stray Light in the 2018 Fireball-2 Flight

2.1 Flight Characteristics

FIREBall-2 last flew on September 22, 2018, from Fort Sumner, New Mexico, USA, during the
fall Columbia Scientific Balloon Facility campaign. Unfortunately, the flight suffered an

Fig. 1 The FIREBall-2 spectrograph nominal optical configuration, oriented on its side. The sur-
face labels in the table appear in sequential optical order. (a) YZ view of the optical layout;
(b) XZ view of the optical layout; and (c) closeup YZ view of the spectrograph optics inside of
the vacuum tank.
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anomaly, significantly impacting the science goals. A hole in the balloon, discovered when the
balloon reached float altitude of 128,000 ft, caused the balloon to descend after only 3 h at the
float altitude. The payload remained above the minimum allowable science altitude for about 1 h
after astronomical twilight. The atmospheric transmission for the FIREBall-2 bandpass is highly
dependent on altitude, with about a 10% reduction for every 3 km of altitude lost. As the altitude
decreased over the course of the flight, the UV throughput dropped sharply, negatively impacting
the ability to observe faint targets as planned.

2.2 Stray Light Problem

During the flight, FIREBall-2 suffered from severe stray light contamination, which compro-
mised the observational effectiveness of the spectrograph. The cause of observed stray light
is primarily attributed to moonlight scattered or reflected from the partially deflated balloon
directly into the spectrograph, as demonstrated in Fig. 2. This problem was exacerbated by
launch timing, which forced the flight to take place during a full moon, drastically increasing
the stray light background.

After the abrupt touchdown of FIREBall-2 and an inventory of damage sustained, the team
conducted postflight calibrations, during which the primary stray light paths were confirmed.4,5

Based on the results of the postflight calibration, a preliminary baffling strategy was proposed.
We present the work done since to implement the proposed strategy and expand the scope and
effectiveness of stray light control measures.

3 Stray Light Analysis of a UV Balloon Telescope

3.1 Stray Light Signature

The optical performance of FIREBall-2 was substantially degraded by various stray light sig-
natures. The main source of stray light was determined to be moonlight scattered and reflected
off of the partially deflated balloon overhead, as shown in Fig. 3. A hole caused the balloon shape
to deviate from the nominal spherical shape to a teardrop shape, which directed and focused light

Fig. 2 Damaged balloon was the primary contributor to the excessive stray light exhibited during
the 2018 flight. (a) Schematic depicting the �24 deg view angle of the siderostat onto the partially
deflated balloon. (b) Upward view from the gondola looking toward the damaged balloon.
(c) Example of an undamaged stratospheric balloon. Image courtesy of NASA Wallops.
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into the telescope and directly into the spectrograph tank. The orientation and brightness of the
full moon exacerbated the problem, scattering visible light into a direct path from the top of the
spectrograph tank onto the back surface of the PCB mount, which then reflected onto the detec-
tor surface. This stray light path was not controlled for in optical analyses and is believed to be
the most problematic source of background light reducing detector performance. The scattered
light background was ∼100× more than expected. The photon counting capability of the
EMCCD detector was not used during flight because of an excess of scattered light, resulting
in higher than expected count rates on the detector (> 1∕event∕pixel∕frame). This corresponds
to a flux of 0.59 e−∕pixel, or 40 e−∕h, during science observations.

In addition to the elevated background levels, flashes of light were observed at certain ori-
entations where moonlight was focused directly into the system by conical sections of the lower
part of the teardrop-shaped balloon. These flashes were ∼2 to 3 times higher in flux than the
expected background or CGM signal. The flash was so severe that any images containing flashes
were discarded from analysis. There is also a possibility that some of these flashes were caused
by specular reflections from the support structure holding the primary mirror and the gon-
dola doors.

More recently, a glint was discovered on the edge of the first Schmidt corrector mirror (SC1).
Sneak paths through the medium bench assembly between the first folding flat (FF1) and the
second folding flat (FF2) illuminate the rough edge of the mirror, scattering light up toward the
detector through the hole in FF2.

3.2 Nonsequential Optical Modeling

To correct the stray light contamination problem, FIREBall-2 was modeled in detail using
Zemax OpticStudio®. By incorporating all of the optical features specified in the sequential opti-
cal model, a nonsequential model was constructed which closely matched the optical perfor-
mance of the nominal system. By comparing the full-field point spread function of the
sequential and nonsequential models, we demonstrated the near equivalence in performance
between the two models, as demonstrated in Fig. 4.

Apertures were modeled accurately, along with the as-built optical surface specifications.
Positioning and orientation of all optical components was carefully checked and rechecked
to ensure the validity of results derived using the model. Mechanical objects were added as
necessary to accurately characterize the possible stray light paths. A balance was struck between
detail and simplicity to optimize ray tracing performance. All critical limiting apertures were
included and surfaces known to be involved in producing the stray light were considered.

Fig. 3 (a) Damaged balloon was bathed in bright lunar illumination during the 2018 FIREBall-2
flight campaign. (b) Resultant lunar stray light produced a veiling glare on the detector.
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Scattering properties were applied to critical surfaces using both built-in and measured scatter
distributions.

Stray light baffles from the 2018 flight campaign were included in the original design. As
new baffles were designed and tested, they were added in one by one to replace the original
baffles. Figure 5 illustrates the changes made within the spectrograph between the 2018 flight
configuration and the present configuration. Figure 5(a) includes: the original conical baffle
located beneath FC1; the undersized pupil plane baffle fixed to rods and positioned above the
slit mask; the foil grating mask attached to the diffraction grating (which was destroyed in 2018);
and the tongue baffle protruding beneath FF2. Figure 5(b) includes: the remanufactured conical
baffle beneath FC1; the significantly enlarged pupil plane baffle; the newly added glint baffle
between SC1 and the grating; the updated grating mask fixed to the grating blank with tabs; the
improved tongue baffle attached to FF2; and the new detector baffle bonded to the rear of FF2.
Performance with and without the proposed baffle solutions was characterized qualitatively and
quantitatively.

Fig. 5 (a) FIREBall-2 spectrograph configuration from the 2018 flight campaign with baffles high-
lighted in blue. (b) Updated FIREBall-2 spectrograph with newly added baffles highlighted in red.
The conical baffle beneath FC1 was been rebuilt, the pupil plane baffle was significantly increased
in size, the SC1 glint baffle was added, the grating mask was remade, and the detector baffle was
added behind FF2.

Fig. 4 (a) Detector irradiance distribution produced with the nonsequential optical model.
(b) Footprint diagram generated with the sequential optical model.
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4 Stray Light Mitigation Strategy

A comprehensive system of baffles was designed and fabricated for installation on FIREBall-2,
highlighted in Fig. 5. By considering all previously identified stray light paths as well as new
paths discovered during detailed analysis, baffles were implemented at locations best suited to
block any and all unwanted light from making its way to the sensitive EMCCD detector.

4.1 Tent Baffle

The first baffle introduced on the FIREBall-2 telescope following the 2018 flight campaign was
the tent baffle. As the most problematic stray light path was quickly determined to originate at
the balloon, the tent baffle was the logical first choice for implementation. Attached to the top of
the gondola doors, the tent baffle extends 50 cm from the top of the gondola and allows unob-
scured observations up to a 65-deg elevation angle. Made out of black, flexible fabric, this baffle
is deployed upon opening of the gondola doors, as demonstrated in Fig. 6. With the primary
source of stray light being traced to the conical underside of the balloon, this baffle is poised to
significantly reduce the stray light background by preventing light emanating from the illumi-
nated balloon from passing through the hole in the siderostat and entering the vacuum tank
through the field lens. This particular stray light path has been identified as one of the most
damaging contributions given the substantial fraction of energy that may be deposited in the
region nearby the detector.

4.2 Conical Baffle

One of the stray light paths previously identified involves double and triple bounce ray paths on
the field corrector mirrors at the top of the spectrograph tank. A conical baffle positioned below
the first focal corrector mirror (FC1) was used to capture ray bundles following these unwanted
paths and redirect them away from the mask/guider system, as shown in Fig. 7. The original
baffle was fabricated with a thin sheet of black anodized aluminum and included a shiny edge
exposed to the unwanted irradiance. This baffle was damaged beyond repair during the 2018
flight campaign.

The conical baffle was redesigned to improve its durability and its effectiveness at capturing
stray light. The walls of the cone were thickened and diameter of the opening aperture slightly
expanded to contain more of the offending ray paths at the edge of the focal corrector optics. The

Fig. 6 (a) Upward view of the FIREBall-2 gondola doors open, allowing light to enter the gondola
structure from above. (b) Tent baffle situated atop the gondola doors blocks balloon-emitted light
from entering the spectrograph tank through the siderostat hole. (c) Simulation of the tent baffle
blocking stray light emanating from the balloon (blue rays from balloon turn green when blocked).
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new baffle is coated with Avian-S to minimize scattering off of surfaces inclined toward the
detector and maximize light trapping.

4.3 Pupil Plane Baffle

One of the most significant stray light paths identified during the 2018 postflight calibrations
involved light propagating from the top of the spectrograph tank onto surfaces in close proximity
to the detector. The 2018 flight hardware included a baffle situated near the intermediate pupil
plane between the focal corrector optics and the field mask, implemented to permit passage of
only light which is contained within the nominal pupil ellipse. A proposal was made to extend
the outer diameter of this pupil plane baffle to block any stray light which might follow the
unwanted ray paths described above. The redesigned baffle is shown at right in Fig. 8 alongside
the old baffle. The outer diameter of the baffle has been extended to effectively separate the upper
part of the spectrograph tank from the lower part, with the pupil plane as the dividing interface.
This new design isolates the lower region of the tank from receiving any unwanted light and
greatly increases the chances of a successful observational campaign.

Fig. 8 (a) Old pupil plane diaphragm was constructed of thin, metal foil, and mounted on threaded
posts. (b) New pupil plane diaphragm is fabricated from sheet metal and mounted to the guider
camera bench with six aluminum gussets. (c) New pupil plane diaphragm with significantly
improved coverage isolates the upper part of the spectrograph tank from the lower bench.

Fig. 7 (a) Conical baffle (red) situated beneath the focal corrector optics catches double and triple
bounce paths between FC1 and FC2, as indicated at right by the per-segment coloration of ray
paths. (b) Each ray path sequentially evolving through violet, cyan, periwinkle, green, and purple
constitute a double bounce path which is captured by the baffle.
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4.4 SC1 Glint Baffle

An unexpected stray light path was discovered by observation during lab testing. Glints of light
reflecting off of the edge of the SC1 mirror after traversing a sneak path through the medium
bench assembly between the FF1 and FF2 mirrors have the potential to send light toward the
detector and increase the background. A barrier attached to the bottom of the spectrograph tank
obscuring the edge of the SC from illuminating downstream optics prevents these potential ray
paths from reaching the detector, as demonstrated in Fig. 9. The barrier is coated with Avian-S to
maximize absorption.

4.5 Grating Mask

The mask affixed to the grating, blocking the region outside the clear aperture of the elliptical
grating surface, was badly damaged during the 2018 flight campaign. For the upcoming flight
campaign, a new mask was designed and fabricated. With an emphasis on robustness and stray
light mitigation, this new mask shown in Fig. 10 presents significant improvements over the
previous mask, which was fabricated with a thin foil taped to the grating surface. Our new
mounting solution using tabs and adhesive to fix the mask to the outer edge of the grating blank
will reduce the risk of damaging the fragile grating surface. Considering the close proximity of

Fig. 9 (a) SC1 glint baffle blocking rays which illuminate the unpolished, chamfered edge of the
SC1 mirror. This mirror edge scatters light directly toward the detector, as observed in the labo-
ratory. (b) Installed baffle, coated with Avian-S, mounted to the bottom bench in between the SC1
mirror and the colorfully illuminated grating.

Fig. 10 (a) Grating mask with fixed to the outer face of the grating blank. Spacers shown in blue
are used during mask installation to prevent damage to the grating surface and then removed after
the adhesive sets. (b) Coated grating mask during a fit check on the flight grating. The mounting
mechanism was later updated as shown in Sec. 6.6.
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the grating surface to the detector plane, the performance of this mask is crucial for mitigating
stray light.

4.6 Tongue Baffle Improvements

A baffle attached to the FF2 mirror and extending down toward the grating was incorporated into
the 2018 flight hardware. The baffle was included for two reasons: (1) to prevent light from
proceeding directly from the diffraction grating onto the detector without first reflecting off
of FF2 and SC2, illustrated in Fig. 11 and (2) to block diffraction orders outside of the sole
þ1-order for which the system was designed. However, the baffle was designed with a smooth
top surface oriented at a high angle of incidence to the chord connecting the grating and the
detector, allowing for a significant portion of light contacting the black anodized surface to
specularly reflect or scatter onto the detector plane.

The tongue baffle, shown in Fig. 12, was redesigned with threading on the top face of the
tongue surface to prevent unwanted light from reflecting and scattering into the vicinity of the
detector. The thread orientation is orthogonal to the plane of incidence of the majority of rays

Fig. 11 Unwanted direct-to-detector ray paths are blocked by the tongue baffle. The tongue baffle
also blocks light just outside of the waveband of interest.

Fig. 12 (a) Tongue baffle upon receipt from ProtoLabs postmanufacturing. (b) Baffle was later
coated with Avian-S optical black at Caltech to minimize scattering near the detector.
(c) Tongue baffle installed onto the FF2 mirror hole.
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intercepting the front face after diffracting, thereby redirecting light away at a steep angle.
The baffle was coated with Avian-S polyurethane coating chosen for its success in aerospace
applications, its low outgassing in high vacuum environments, and its durability.

4.7 Detector Baffle

To mitigate the risk of light scattering from the unpolished backplane of FF2 or the inner walls of
the center hole in mirror FF2 from interacting with the detector, the detector baffle shown in
Fig. 13 was developed. It is believed that sneak paths allowed stray light to illuminate the back-
plane of FF2 and scatter onto the detector during the 2018 flight campaign. The baffle encap-
sulates the ray cones across the field converging onto the detector plane and fills the gap between
the inclined detector package and the back of FF2. The space between the FF2 backplane and the
detector plane was identified as the most likely source of much of the scattered stray light
observed in 2018. Vanes trap and redirect unwanted light in spectrograph tank away from the
focal plane. The baffle is coated in Avian-S to reduce scattering. The vanes were designed geo-
metrically, using principles described in Ref. 6. Proximity to the detector and the high risk of
near-to-detector stray light renders this baffle critical for mission success.

5 Effectiveness of Implementation

To ensure the effectiveness of the stray light mitigation plans, verification testing was conducted
for each baffle. Nonsequential ray tracing with and without each baffle showed marked improve-
ments in the stray light rejection with the inclusion of the baffles. Nonsequential analysis results
were compared with on-sky images highlighting stray light features. A comparative study of the
distribution of stray light across the detector plane was used to quantitatively analyze the validity
of the developed model.

Figure 14 demonstrates the effectiveness of the baffle implementation at mitigating stray
light. The image at left depicts a typical stray light distribution from the 2018 FIREBall-2 flight
campaign. The most notable features are the density of irradiance in the bottom right diagonal of
the detector plane, which is replicated in center left figure containing detector irradiance results
from a nonsequential ray tracing analysis. The source of stray light in this simulation comes from
a radial source spanning 13.5 deg to 24 deg from vertical, modeled as an analog to lunar radiation
redirected from a fully illuminated balloon above FIREBall-2. This source configuration was
identified as the most problematic stray light contribution during the 2018 flight and was there-
fore the most pressing issue to overcome.

Fig. 13 (a) The front view of the ProtoLabs-fabricated detector baffle with respect to the sequential
optical path. The vanes are designed to redirect rays away from the detector plane and capture
unwanted light scattered from the FF2 central hole into the intervane cavity. (b) The baffle was later
coated with Avian-S at Caltech and transported to Columbia University for integration into the
FIREBall-2 spectrograph. The image shows the baffle fixed to the backplane of the FF2 mirror.
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When the detector baffle is added to the optical model, stray light in the upper portion of the
detector is reduced, but there is still substantial irradiance streaming into the detector at high
angles after scattering off of the rear surface of the FF2 mirror. It should be noted that the detector
baffle was designed with substantial margin between the detector plane and the mechanical sur-
face to minimize the risk of interference, and this margin reduces the baffle’s ability to block
high-angle stray light. However, when the pupil plane baffle is included, the baffle designed
specifically to block the direct paths to the detector, which were identified in 2019, the stray
light from the source described above is entirely blocked, as shown in Fig. 14(c). Moreover, if
only the tent baffle is included, all stray light from this source configuration is blocked, as shown
in Fig. 14(d). Redundancy in baffling solutions is essential to promote mission success, as there
is a small risk of tearing the tent baffle or other possible failure modes.

6 Baffle Integration

A plan for integrating the system of baffles developed for FIREBall-2 was developed by Aafaque
Khan and Simran Agarwal in conjunction with colleagues at Columbia University. Multiple
baffles were fixed in place using 3M EC 2216 B/A Scotch-Weld Epoxy Adhesive, while others
were bolted onto the upper and lower spectrograph benches. The epoxy was mixed by volume
with syringes and degassed with a vacuum pump in a bell jar.

The biggest challenge of the integration process was that the spectrograph optics had already
been aligned, meaning that baffles had to be installed in situ with the mirrors in place. This was
particularly problematic for the grating mask, but the team made effective use of protective tents
to prevent optics from being damaged while baffles were positioned.

6.1 Tongue Baffle Integration

Before installation of the tongue baffle, leftover epoxy on FF2 from the 2018 campaign required
that parts of the baffle tabs be removed manually, as chipping off epoxy could have damaged
the mirror. The baffle was sent back to Caltech for recoating after the interfering regions were
removed. The tongue baffle was fixed to the inner hole of the FF2 mirror with adhesive and a
3D-printed “casquette” tool to press the tabs onto the mirror edge, as illustrated in Fig. 15. The
baffle tabs first catch the edge of the mirror during by-hand installation, then the casquette tool

Fig. 14 (a) On-sky image of stray light observed during the 2018 flight campaign. (b) Detector
irradiance from a nonsequential ray trace simulating the stray light distribution from on-sky with
no baffles installed. (c) Marginal reduction in stray light with the inclusion of the detector baffle.
(d) Nearly complete mitigation of stray light with both the detector baffle and the pupil plane baffle
included. The inclusion of the tent baffle alone is also able to affect this sharp reduction in stray
light.

Brendel et al.: Balloon-borne FIREBall-2 ultraviolet spectrograph stray light control based on nonsequential. . .

J. Astron. Telesc. Instrum. Syst. 048001-11 Oct–Dec 2022 • Vol. 8(4)



precisely positions and orients the baffle as pressure is applied. A shim and kapton tape were
inserted at the edge of the tool to ensure a tight fit during epoxy curing.

6.2 Detector Baffle Integration

Next, the detector baffle was installed onto the back of the FF2 mirror using a 3D-printed jig and
shims for positioning as shown in Fig. 16. With the jig placed on FF2 and adhesive applied to
bottom of the baffle, the baffle was pressed onto FF2 and shims were applied to the top and
bottom along with kapton tape to fix the baffle in place during epoxy curing. Once the epoxy
cured, the jig was removed and the detector assembly was installed for a fit check.

6.3 Thermal Analysis of Detector Baffle

There was a mild concern that the proximity of the detector baffle to the cold detector and copper
cold clamp connected to the detector, as shown in Fig. 16(b), could cool the baffle via radiative
heat transfer. This cooling could induce thermal gradients in the FF2 mirror and potentially stress
the adhesive bonding contacts past the point of failure.

To ensure that these thermal gradients did not pose a mission critical risk, we conducted a
thermal simulation involving the Zerodur FF2 mirror, the detector baffle, and the radiating cop-
per detector clamp. The detector clamp has the largest view factor to the detector baffle, so this
was the only cold surface used in the model. Direct thermal contact was assumed between the
baffle and FF2, as the thickness of the adhesive bond would have an insignificant effect on steady

Fig. 15 (a) View of the bottom side of tongue baffle with epoxy being applied to the mounting tabs.
(b) Rear view of the casquette tool inserted into the FF2 hole and pressed onto the baffle tabs. The
3D-printed tool ensures that the baffle is positioned and oriented correctly.

Fig. 16 Detector baffle (a) with epoxy on the bottom and (b) installed onto the backplane of FF2.
The 3D-printed jig for baffle alignment was removed after the epoxy cured. (c) View showing the
proximity of copper detector clamp to the detector baffle.
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state thermal gradients. Various cases for mirror temperature boundary conditions and emissivity
of the 110-K copper clamp were used in the model.

By analyzing the radiative transfer from the 110-K clamp to the detector baffle, the worst case
scenario indicates that a thermal gradient of no>0.1 K from the coldest to the hottest spot on the
baffle. We inferred that the high thermal mass of the mirror and the high conductivity and low
thermal mass of the baffle average out the temperature. With these findings, we successfully
confirmed that radiative transfer does not pose any risk of inducing failure in the baffle bond.

6.4 SC1 Baffle Integration

The SC1 glint baffle was bolted to the bottom bench of the spectrograph. Originally, the plan was
to fix this sheet of metal in place with adhesive, but the team reconsidered this decision and
decided to implement a clamping mechanism instead. Figure 17 shows a side view and an under-
side view of the mechanical clamping mechanism used to fix the baffle in place between SC1 and
the grating.

6.5 Conical Baffle Integration

The conical baffle was one of the simplest baffles to install. Three threaded holes in the FC1
mounting ring on the field corrector assembly were used to install the baffle in 2018, and these
same holes were for this installation. The baffle, coated with Avian-S, hangs beneath the field
corrector optics as shown in Fig. 18.

6.6 Grating Mask Integration

The grating mask posed significant challenges during integration, not the least of which was the
tight space into which it had to be installed. Originally, the mask was to be installed with three
simple tabs contacting the outer edge of the blank. However, there was a mismatch between the
size of the actual grating blank and the grating blank in the FIREBall-2 CAD model. This mis-
match left too great a gap between the tabs and the edge of the blank for the adhesive to hold.

As such, a mounting method was developed by the team that used three additional clamping
bars to which the original mounting tabs were attached. The new mounting solution is demon-
strated in Fig. 19, where mounting clamps are bonded to the grating blank and the mask tabs are
bolted onto these clamps.

6.7 Pupil Plane Baffle Integration

The pupil plane baffle is the last baffle to be installed. The baffle was mounted using a system of
vertical gussets, metal rods attached to the mask guider bench atop the spectrograph medium

Fig. 17 (a) Side view of the SC1 baffle mounted onto the bottom bench. (b) Underside view show-
ing the mounting components under the bottom bench.
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bench. Thin rods are used for mounting because of tight constraints on added mass. Structural
support is provided almost entirely by four gussets, whereas two extra gussets are included to
prevent flapping of thin metal sheet. A fit check of the baffle and a demonstration of the mount-
ing scheme are shown in Fig. 20.

7 Conclusion

We have developed and implemented a stray light mitigation system on the FIREBall-2 UV
balloon telescope. Comprehensive stray light analysis via nonsequential optical modeling, paired

Fig. 19 The grating mask is attached to the grating blank through a set of three bonded clamps to
which the mask tabs are bolted.

Fig. 18 The conical baffle is fastened onto the FC1 mounting ring and sits beneath the field
corrector assembly.
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with on-sky stray light images enabled a unique and effective strategy for providing a compre-
hensive solution. Baffles were designed and fabricated and are planned for integration onto the
telescope in the near future. With the proposed system of baffles, the next FIREBall-2 flight
campaign will exhibit considerable improvements in stray light rejection and maximize scientific
impact.
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Fig. 20 (a) The pupil plane baffle positioned above the spectrograph medium bench during a fit
check. (b) The installed pupil plane baffle after detector shimming. Thin rods are used to hold the
pupil plane baffle in place.

Brendel et al.: Balloon-borne FIREBall-2 ultraviolet spectrograph stray light control based on nonsequential. . .

J. Astron. Telesc. Instrum. Syst. 048001-15 Oct–Dec 2022 • Vol. 8(4)

https://doi.org/10.3847/1538-4357/aba1e0
https://doi.org/10.1117/12.789836
https://doi.org/10.1117/1.JATIS.6.1.011007
https://doi.org/10.1117/1.JATIS.6.1.011007
https://doi.org/10.1117/12.2518711
https://doi.org/10.1117/1.JATIS.6.4.044004

