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Abstract. Pump-probe microscopy is an emerging molecu-
lar imaging technique that probes the excited state dynamics
properties of pigmented samples. This method has been
particularly intriguing for melanoma because, unlike other
methods available, it can provide nondestructive, quan-
titative chemical information regarding different types of
melanins, with high spatial resolution. In this Letter, we
present a method based on mathematical morphology to
quantify melanin structure (eumelanin, pheomelanin, and
total melanin content, uniquely available with pump-
probe microscopy) to aid in melanoma diagnosis. The
approach applies a two-dimensional autocorrelation func-
tion and utilizes statistical parameters of the corresponding
autocorrelation images, specifically, the second moments
and entropy, to parameterize image structure. Along with
bulk melanin chemical information, we show that this
method can differentiate invasive melanomas from noninva-
sive and benign lesions with high sensitivity and specificity
(92.3% and 97.5%, respectively, with N ¼ 53). The math-
ematical method and the statistical analysis are described
in detail and results from cutaneous and ocular conjunctival
melanocytic lesions are presented. © The Authors. Published by SPIE
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The incidence of cutaneous melanoma is rising faster than any
other type of cancer, however, many experts believe this trend
may be due to an increase in false positives rather than an

increase in the true occurrence of melanoma.1 This notion is
fueled, in part, by the significant mismatch between the dis-
ease’s incidence rate and mortality rate, which have increased
120% and 5%, respectively, since 1991.2,3 In addition, studies
have found no statistical differences between the mortality
rates of areas that screen for melanoma and those that do
not.4 These facts raise important questions regarding current
diagnostic paradigms and call for new strategies that can help
better target this disease.

The current gold standard for melanoma diagnosis is visual
or dermoscopic inspection, followed by excision, and micro-
scopic examination of fixed tissue slices (∼5-μm thick) using
hematoxylin and eosin (H&E) staining. Unfortunately, histo-
logical evaluation suffers from significant drawbacks; for exam-
ple, it is subjective. As a result, melanoma diagnosis is subject to
(1) high discordance rates (∼14%) (i.e., pathologists examining
the same skin biopsy samples disagree on the diagnosis);5 and
(2) a “diagnostic drift” (i.e., the same severely atypical dysplas-
tic nevi samples diagnosed as nonmalignant in the late 1980s
are now reclassified as malignant).6

These problems have motivated the development of molecu-
lar imaging techniques that provide additional insight into the
disease states.7,8 In this work, we utilize pump-probe micros-
copy, which yields information on diagnostically relevant pig-
ments, namely eu- and pheo-melanin, by probing their excited
state photodynamics.7 The ability to visualize the melanin chem-
istry with high spatial resolution is potentially useful to aid diag-
nosis since it provides insight into metabolic states, location of
melanocytes, and melanogenesis.7 Recently, we have demon-
strated the ability to quantitatively differentiate between mela-
nocytic nevi and malignant melanomas based on bulk percent
eumelanin, without considering its spatial distribution.7 These
findings echo those of other studies that use diffuse reflectance
spectroscopy9 or destructive chemical analyses.10 Unlike these
methods, however, pump-probe microscopy offers additional
information based on the subcellular distribution of the melanin
content,7,11 which, if quantified, could have a significant impact
on melanoma diagnosis.

In this Letter, we quantify melanin spatial distribution using a
mathematical morphology transformation. The approach applies
a two-dimensional (2-D) autocorrelation function to the quanti-
tative molecular images and extracts statistical properties from
the resulting distribution. The parameters extracted to quantify
melanin structure are described and their diagnostic relevance is
demonstrated by analyzing pigmented, unstained, thin cutane-
ous, and conjunctival melanocytic lesions. Results are compared
to the diagnosis made by a board-certified pathologist (Dr. M. A.
Selim) using H&E stained samples from adjacent slices from the
same lesions.

In pump-probe microscopy, two laser pulses are used to
probe the ultra-fast dynamic properties of pigmented samples.
A detailed description of the instrumentation is given else-
where.7 In brief, the output of a mode-locked Ti:Sapphire
laser, tuned to 810 nm, is split into two beams: One is used
to pump an optical parametric oscillator that is tuned to
720 nm, and then modulated at 2 MHz using an acousto-
optic modulator. The second beam from the Ti:Sapph (probe
beam) is sent to a delay-line to control the time of arrival of
the probe with respect to the pump. Then the pump and
probe beams are recombined and sent to a scanning microscope.
This wavelength combination is chosen to increase contrast
between eu- and pheo-melanin. When a nonlinear interaction
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between the two beams occurs in the sample, the pump modu-
lation is transferred to the probe beam, which is then detected
using a lock-in-amplifier.

Data collected can be considered a hyperspectral cube, where
two dimensions contain the spatial information and the third
contains the dynamic properties. To obtain quantitative molecu-
lar maps of the melanin distribution, we first remove unwanted
contributions from pigments that are irrelevant to the diagnosis
of melanocytic lesions by applying phasor analysis.12 Unwanted
pigments may include surgical ink and/or hemoglobin, neither
of which is produced by melanocytes. In phasor analysis, clus-
ters of points in a 2-D histogram of the phasors (cosine and sine
transformations from the time response of each image-pixel) are
indicative of different molecular species, allowing one to digi-
tally remove unwanted species by applying a mask in phasor
space. The same mask, as determined by the cumulative phasor
histogram of 42 cutaneous lesions,12 is applied to all images.
Finally, we obtain quantitative information by solving an over-
determined set of linear equations (i.e., by matrix inversion),
using as a basis set the known pump-probe response for
sepia eumelanin and synthetic pheomelanin. Four molecular
maps are obtained: eu- and pheo-melanin distribution, total
melanin content, and percent eumelanin. (A different class of
melanin, identified as iron-loaded eumelanin, was recently
found in tissue and in Jurassic-aged fossils,13 but its diagnostic
value is still under investigation and is thus not specifically
accounted for here.)

Once these four quantitative molecular images are obtained,
a 2-D autocorrelation is computed for each. This is equivalent
to producing a morphological autocorrelation transformation
(MAT) which extracts second-order geometrical information
(i.e., morphological covariance) and can produce metrics that
are invariant to translation, scale, and rotation.14 (MAT was
defined in Ref. 14 as a collection of directional autocorrelation
functions, computed for a set of angles ϕ. These are equivalent
to radial slices of the 2-D autocorrelation. Thus, the 2-D auto-
correlation represents a MAT covering a range of ϕ ∈ ½0; π�.)
The MAT provides information that is not made available by
other mathematical morphology methods (e.g., morphological
skeleton transformation or pattern spectrum), which are first
order and can only describe boundaries and areas, or give a
skeletal image representation.15 Thus, MAT can better depict
the complex architecture observed in the pigmented tissue
samples and allow comparison of melanin structure across dif-
ferent images and specimens. Built-in MATLAB (Mathworks
2013, Natick, Massachusetts) functions were used for all
computations.

Figure 1 shows representative quantitative molecular images
(percent eumelanin) along with their MAT. In general, benign
samples tend to have pigment that is more organize or struc-
tured; in other words, the melanin is bounded to the epidermis
or dermal-epidermal junction.16 This organized structure mani-
fests itself as anisotropy in the MAT; for example, the MATwill
contain a “pointy” streak. On the other hand, samples exhibiting
higher degrees of vertical growth, a hallmark of invasive behav-
ior,16 will possess a rounder, more homogenous MAT distribu-
tion. To quantify this observation, we start by computing the
standard-deviations (second moments, σx and σy) along and
orthogonal to R, a vector from the origin to the center-of-
mass of the MAT. Then, we define the normalized MAT
anisotropy parameter as θ ¼ jtan−1ðσy∕σx − 1Þj, which varies
from 0 (highly disorganized) to π (highly organized); note

that θ is rotation invariant, zero when σy ¼ σx and symmetrical
about σy ¼ σx. Further, the magnitude of R can be interpreted as
the amount of organized pigmentation along the direction of
highest covariance, which is typically along the epidermis.
These parameters are depicted graphically in Fig. 1(b). Next,
we compute the entropy of the MAT, which provides an addi-
tional measure of the organization of the pigment (i.e., spatial
heterogeneity). Note that the image entropy and MAT entropy
are not equivalent since the MAT is a second-order transforma-
tion. Lastly, images with low SNR (below 0 dB) are omitted
from the analysis; to estimate the noise from a single image,
we use the average difference in intensity between the zero-
lag of the MAT and adjacent points.17

The results for N ¼ 53 cutaneous lesions are summarized in
Fig. 2. For comparison with the MAT structure analysis, we first
classify the lesions using bulk pigment information (such as per-
cent eumelanin), neglecting spatial morphology. Figure 2(a) is
a scatter plot of percent eumelanin average versus standard-
deviation; with decision lines determined using a quadratic
discrimination function. Here, the data generally show that as
lesions become more eumelanotic, they lose chemical hetero-
geneity (i.e., the distribution of percent eumelanin becomes nar-
rower). However, this trend is not strong, and we observe that
the percent eumelanin alone is a poor predictor of invasive
lesions. To quantitatively compare the predictive power of the
parameters, the leave-one-out cross-validation (LOOCV)
method is used, which provides an unbiased estimate of the pre-
dictive error and is a common choice for small sample sets.18

Also, support vector machine (SVM) is used to train the algo-
rithm with a Gaussian radial basis function kernel.19 Using these
bulk melanin parameters alone to discriminate between invasive
and noninvasive lesions, the cross-validation yields a sensitivity

Fig. 1 Representative percent eumelanin images along with their two-
dimensional (2-D) morphological autocorrelation transformation
(MAT). Because the MAT is symmetric about the origin, only the
right half-plane is depicted. (b) Illustrates the parameters extracted
from the MAT to quantify image structure, see text for details.

Fig. 2 Scatter plot of quantitative parameters. Arrows point to the
parameters from samples shown in Fig. 1. SK: seborrheic keratosis
(benign), BN: benign nevus, CN: compound nevus, DN: dysplastic
nevus, MIS: melanoma in-situ, and IM: invasive melanoma.
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(probability of detection) PD ¼ 69% and specificity (comple-
ment of false alarm probability) 1 − PFA ¼ 72%. Note that
with SVM and LOOCV, the user does not have to specify deci-
sion lines nor a sensitivity or specificity value. It is also worth
emphasizing that we only classify for invasive melanomas since
clear cytological and architectural features for this lesion type
allows for an indisputable diagnosis using histology and thus
provide an appropriate benchmark for the analysis.

Figure 2(b) incorporates the entropy from the eumelanin
image MAT, where it is clear that the two parameters provide
better discrimination. Quantitatively, the standard-deviation of
the percent eumelanin and entropy of the eumelanin image
MAT yield an improved PD ¼ 84.6% and 1 − PFA ¼ 85%.
Adding R and θ from the eumelanin image MAT [shown in
Fig. 2(c)] to the cross-validation further improves the classifier
to PD ¼ 92.3% and 1 − PFA ¼ 97.5% (one false negative and
one false positive).

These results show dramatically improved sensitivity and
specificity even over previous attempts to incorporate spatial
information using wavelet analysis and hidden Markov trees,
which have achieved PD ¼ 72% and 1 − PFA ¼ 74% (same
dataset and statistical analysis were used in this study).20

Further improvements might be possible by incorporating addi-
tional MAT-derived parameters (e.g., entropy of total-melanin
image MAT). However, each new parameter increases the
dimensionality of the classification space, bringing on the so-
called “curse of dimensionality”: while our limited training
set (N ¼ 53) adequately samples a low-dimensional space, it
is too sparse in a high-dimensional space to reliably estimate
decision boundaries.21 These effects are expected to lessen as
we acquire a larger training set in future work.

The 2-D MAT analysis was also recently applied to conjunc-
tival melanocytic lesions22 (the MAT method was not described
in detail there). In this proof-of-principle work, a smaller sample
subset was imaged (N ¼ 12), with three different groups:
benign nevi, primary acquired melanosis, and conjunctival
melanoma. For these lesions, θ from pheomelanin images,
total melanin MAT entropy, and percent eumelanin standard-
deviation provided perfect separation of the three different
groups. Although this was a small study, the results further
support the importance of the 2-D MAT as a valuable tool to
quantify image structure for melanoma detection.

Recent work by Seidenari et al.8 using multiphoton laser
tomography and fluorescence life time imaging (FLIM) have
also shown promising results for diagnosing melanoma. They
differentiate between disease states using FLIM spectra along
with morphological features. Classification of features, however,
was achieved using observer-blinded studies rather than math-
ematical/computational approaches.

In conclusion, we have presented a method to quantify
pump-probe image structure using a 2-D mathematical autocor-
relation transformation. The parameters extracted from the
MAT, namely R, θ, and entropy, seek to quantify different
features related to the structure of the molecular images. The
method can be implemented using built-in MATLAB functions
and all new parameters have been explicitly defined. The com-
bination of these parameters along with bulk chemical pro-
perties, yield high sensitivity and specificity for invasive mela-
noma. Future work will focus on obtaining a larger sample set
to enable separation of other lesion types, such as melanoma
in-situ and dysplastic nevi, and to look for statistical differences
with age and gender.
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