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Abstract. Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess
the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sen-
sitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse
optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise,
NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the
detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal
tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a
well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a
stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of rel-
atively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption
variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experi-
ments are performed to verify merits of the proposed method, and the results show that the image reconstruction
method is stable and accurate for the identification of abnormal tissues, and robust against the measurement
noise of data. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.9.096011]
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1 Introduction
Breast cancer is a major health problem. If this disease is treated
at an early stage using current therapies, patient prognosis
improves significantly. Currently, multiple methods are avail-
able for breast cancer screening and diagnosis. The x-ray mam-
mography is an effective screening technique. However, the
breast consists of tissues with similar densities and has similar
attenuation coefficients. The appearance of cancer on mammo-
grams has a substantial similarity to that of normal tissues. The
x-ray mammography is less sensitive in dense breast.1 X-rays
are also a type of ionizing radiation that bears a risk of cancer
induction. Magnetic resonance imaging (MRI) is another effec-
tive and sensitive technique to detect cancer in dense tissues.2 It
has a very high negative predictive value, which helps to distin-
guish benign tumors and malignant tumors, and decrease the
possibility of false-negative diagnosis. A major disadvantage
of MRI is that it is much more expensive and time-consuming
than other breast-diagnostic methods. Ultrasonography can
delineate cysts, and benign and malignant masses. But it is lim-
ited by poor soft-tissue contrast, inherent speckle noise, and
strong operator dependence.3 The optical molecular imaging
modality uses exogenous fluorescent probes as additional con-
trast agents that target molecules relevant to breast cancer.4 The
use of fluorescent probes has a potential in early breast cancer
detection but the effectiveness of the fluorescence imaging relies
on the functions of the probes.5 Molecular contrast probes on
specific tumor receptors or tumor-associated enzymes are also
under development.

Diffuse optical tomography (DOT) was introduced in the
early 1990s. DOT uses near-infrared (NIR) light transmission

and intrinsic breast tissue contrast for the detection and charac-
terization of abnormal tissue.6 It is sensitive, cost-effective, does
not involve any ionizing radiation, and has a high sensitivity due
to the rich optical absorption contrast. Owing to the relatively
low absorption of hemoglobin, water, and lipid at wavelengths
of 650 to 1000 nm, NIR light can transmit through several cen-
timeters of biological tissue with an adequate signal-to-noise
ratio for breast tomographic imaging.7 Furthermore, in this spec-
tral range, oxyhemoglobin, deoxyhemoglobin, and lipids pre-
dominantly affect the absorptive properties of the breast
tissue. There is a difference in total hemoglobin concentration
levels between benign and malignant breast lesions, so it was a
useful indicator for distinguishing between benign and malig-
nant breast lesions.8 By combining images reconstructed by
DOT at various wavelengths, concentrations of oxy- and deoxy
hemoglobins and water can be determined to reveal tumors from
background tissue.9

However, NIR light is strongly scattering in biological tissues,
the measurable quantity can only be collected on a partial external
surface of an object, and light fields obtained from different exci-
tation sources are highly correlated. The resultant volumetric
reconstruction is a nonlinear inverse problem and suffers from
severe illposedness exaggerated by data noise, NIR light scatter-
ing, and measurement incompleteness. The image reconstruction
is still the most challenging imaging tasks. Iterative methods and
linearization methods are popular image reconstruction algo-
rithms for the optical tomography.10,11 The regularization or sta-
bilization techniques are often applied to obtain physically
realistic results, such as Tikhonov regularization, and l1- and
lp-norm regularizations.12–14 However, these methods cannot
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fundamentally solve the illposed problem of the DOT, usually
resulting in aberrant image reconstruction in the presence of
measurement noise.

In this paper, we propose a new diffuse optical tomographic
imaging method for the detection of breast cancer. This method
divides the image reconstruction problem into the localization of
abnormal tissues and the quantification of absorption variations.
The localization of abnormal tissues is performed based on a
well-posed optimization model, which can be solved using dif-
ferential evolution (DE) global optimization method. The quan-
tification of abnormal absorption variations is then determined
in localized regions of relatively small extents, in which poten-
tially tumors might be. This method is robust against the meas-
urement noise of data and produces accurate and stable image
reconstruction of abnormal absorption variations in the breast.

2 Image Reconstruction

2.1 Physical Model

Optical imaging utilizes light propagating through tissue for the
assessment of optical properties. The propagation of light in bio-
logical tissues is a complex process involving both absorption
and scattering of light. The light propagation model describes
the interaction of photons with tissues, and predicts a light inten-
sity distribution in the breast and on its external surface. By
minimizing the discrepancy between the predicted data and
measured data, an image reconstruction algorithm can recover
the spatial distribution of intrinsic optical tissue properties. The
radiative transfer equation (RTE) accurately models the photon
propagation in biological tissues.15,16 Due to the extensive com-
putational cost, it is difficult to directly apply RTE for biomedi-
cal tomographic imaging. The diffusion approximation (DA)
model to RTE is widely used to describe the NIR light transport
in biological tissues with a high computational efficiency and an
adequate accuracy in strongly scattering and weakly absorbing
objects.15 The steady-state DA model is expressed as follows:

EQ-TARGET;temp:intralink-;e001;63;353 − ∇ · ½DðrÞ∇ΦðrÞ� þ μaðrÞΦðrÞ ¼ SðrÞ; r ∈ Ω; (1)

where r is a positional vector, ΦðrÞ is the NIR photon fluence
rate, SðrÞ is the NIR source, μaðrÞ is the absorption coefficient,
DðrÞ is the diffusion coefficient defined by DðrÞ ¼
f3½μaðrÞ þ μ 0

sðrÞ�g, μ 0
sðrÞ is the reduced scattering coefficient,

and Ω ⊂ R3 is a region of interest in the object. If no photon
travels across the boundary ∂Ω into the tissue domain Ω, DA
is constrained by the Robin boundary condition17

EQ-TARGET;temp:intralink-;e002;63;245ΦðrÞ þ 2αDðrÞ½υ · ∇ΦðrÞ� ¼ 0; r ∈ ∂Ω; (2)

where υ is an outward unit normal vector on ∂Ω, and α is
the boundary mismatch factor between the tissue with a
refractive index n and air, which can be approximated
by α ¼ ð1þ γÞ∕ð1 − γÞ with γ ¼ −1.44n−2 þ 0.71n−1 þ 0.67
þ0.06n.17 The measurable photon fluence on the surface of
the object can be expressed as

EQ-TARGET;temp:intralink-;e003;63;148mðrÞ ¼ −DðrÞ½ν · ∇ΦðrÞ�; r ∈ ∂Ω: (3)

Breast tissue consists mainly of light elements with low
atomic numbers, and its elemental composition is nearly uni-
form with little density variation. Because the scattering co-
efficient provides information about internal structure, the spa-
tial variation of scattering coefficients in breast tissues is slow.12

The absorption coefficient is related to tissue chromophores
(e.g., water, lipid, oxy- and deoxyhemoglobins), and the absorp-
tion imaging of hemoglobin is potentially useful in assessing
tissue status and malignancy. Hence, in this context, we only
focus on the absorption contrast since angiogenesis in cancer
mainly causes a change in absorption properties of hemoglobin.
Accordingly, we can decompose the absorption coefficients into
μaðrÞ ¼ μ0aðrÞ þ δμaðrÞ, where μ0aðrÞ is the absorption coeffi-
cient of normal breast tissue, and δμaðrÞ denotes the abnormal
absorption variations in tissues, since malignant tissues show
higher levels of absorption compared to healthy tissues.
Hence, we can rewrite Eq. (1) as follows:

EQ-TARGET;temp:intralink-;e004;326;620−∇ · ½DðrÞ∇ΦðrÞ�þμ0aðrÞΦðrÞþδμaðrÞΦðrÞ¼SðrÞ; r∈Ω:
(4)

Equation (4) is the governing imaging model for the image
reconstruction of abnormal tissues.

2.2 Localization of Abnormal Absorptions

The geometrical shape of the compressive breast can be accu-
rately established via laser scanning.18 From the geometrical
shape of the compressive breast, a finite-element mesh is gen-
erated using the computer graphic techniques (Amira software).
Key reference points are marked on the breast. Accordingly, the
markers also appear on the measured photon density image.
Thus, the one-to-one relationship between all pixels on the mea-
sured photon density image and the coordinates of the finite-ele-
ments model can be established for the image registration.
Based on the finite-element model, differential Eqs. (2) and
(4) can be discretized into a matrix equation with respect to
the photon fluence rate ΦðrÞ19

EQ-TARGET;temp:intralink-;e005;326;391AΦþ BðδÞΦ ¼ S; (5)

where δ ¼ fδ1; δ2; · · · ; δNg is a vector defining abnormal
absorption variations at nodes δμaðrÞ, the components of the
matrix A is computed as
EQ-TARGET;temp:intralink-;e006;326;328

aij ¼
Z
Ω
DðrÞ∇φiðrÞ · ∇φjðrÞdrþ

Z
Ω
μ0aðrÞφiðrÞφjðrÞdr

þ
Z
∂Ω

φiðrÞφjðrÞ∕2αdr; i; j ¼ 1; 2; · · · ; N; (6)

and the components of the matrix B is computed as

EQ-TARGET;temp:intralink-;e007;326;246bij ¼
XN
k¼1

δk

Z
Ω
φkðrÞφiðrÞφjðrÞdr; i; j ¼ 1; 2; · · · ; N;

(7)

where φiðrÞði ¼ 1; 2; · · · ; NÞ are the shape functions. Since the
matrices A and B in Eq. (5) are positive definite, we have

EQ-TARGET;temp:intralink-;e008;326;161Φ ¼ ½Aþ BðδÞ�−1S: (8)

To simplify the computational complexity, Eq. (8) can be lin-
earized to establish the linear relationship between the measured
photon fluence rate ΦðΓÞ and abnormal absorption variations δ

EQ-TARGET;temp:intralink-;e009;326;96Φ0ðΓÞ −ΦðΓÞ ¼ A−1ðΓÞBðΦ0Þδ; (9)
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where Γ is a boundary nodal set on the finite-element mesh cor-
responding to the measurable photon fluence rates on upper sur-
face and lower surface of the breast, Φ0 ¼ A−1S is the photon
fluence rate in case of absence of abnormal absorptions. To find
a stable solution of Eq. (9), we introduce the following optimi-
zation model:

EQ-TARGET;temp:intralink-;e010;63;686

8<
:

½δ�ik ; p�
k� ¼ argmin kA−1ðΓÞBðΦ0Þδ − ½Φ0ðΓÞ −ΦðΓÞ�k

δik > 0; k ¼ 1; 2; : : : ; T
δj ¼ 0; j ∈= fi1; i2; : : : ; iTg

;

(10)

where the vector δ includes T positive nonzero values
fδi1 ; δi2 ; · · · ; δiTg, which represents the abnormal absorption
variations at some isolated locations, which are determined
by the corresponding nodal indices fi1; i2; · · · ; iTg, and T is
a known positive integer that can be estimated as prior knowl-
edge. For breast imaging, T represents the number of tumors in
the breast. In general, it is reasonable to assume that T is less
than 3 at an early stage of breast tumor, allowing a relatively
easier solution to the optimization model Eq. (10). Each
nodal index ikðk ¼ 1; 2; · · · ; TÞ corresponds to a tumor position
in the breast, which is an approximation to the average of coor-
dinates weighted by the absorption values. The absorption varia-
tion δikðk ¼ 1; 2; · · · ; TÞ is also an important feature of
the tumor.

Equation (10) represents an NP (nondeterministic polyno-
mial time) problem and cannot be efficiently solved using a gra-
dient-based optimization method. Hence, a global optimization
method, DE, can be used to solve the optimization problem
Eq. (10). DE regenerates a population through executing muta-
tion, crossover, and selection. It is a powerful stochastic optimi-
zation strategy and has a superior converging behavior at a high
precision. Especially, for the small number of variables, the DE
method is very manageable. In case of the unknown T, we can
heuristically determine the number of tumors by gradually
increasing the number of T, and solving Eq. (10). For each
reconstructed image, if two or more positive abnormal absorp-
tion variations are so close that they cannot be isolated within a
user-specified spatial resolution, they should be combined into a
single abnormality for the determination of tumor number.

2.3 Quantification of Abnormal Absorption
Variations

Based on locations of tumors estimated by the reconstruction
algorithm in above section, we can further quantify the inten-
sities of abnormal absorption variations for tumors. We set a
subregion Ωkðk ¼ 1; 2; · · · ; TÞ around the tumor position
with a radius related to the estimation of the abnormal absorp-
tion variations δ�ikðk ¼ 1; 2; · · · ; TÞ to form a feasible region

Ω̄ ¼ S
T
k¼1 Ωk of abnormal absorption variations for image

reconstruction. Region Ω̄ contains relatively small extents com-
paring with global region Ω. Consequently, the number of
unknown variables can be significantly reduced to overcome
the underdetermined nature of DOT. From the feasible region
Ω̄, we effectively perform image reconstruction using an algo-
rithm for sparse linear equations and least squares19,20 based on
Eq. (10) as follows:

EQ-TARGET;temp:intralink-;e011;326;752

�
δ� ¼ argmin kA−1ðΓÞBðΦ0Þδ − ½Φ0ðΓÞ −ΦðΓÞ�k
δ ∈ Ω̄; :

(11)

3 Numerical Simulations
To quantify the performance of proposed image reconstruction
method, a digital breast phantom is applied for the numerical
experiments. The breast phantom was developed from clinical
dual-energy x-ray CT.21,22 The phantom was defined from the
tetrahedral mesh with 65,196 tetrahedral elements and 14,490
nodes, as shown in Fig. 1. The fibroglandular tissue volume
fraction map CfðrÞ is obtained from digital mammogram. In
the numerical simulations, it is assumed that the primary breast
tissue constituents are fibroglandular and adipose tissue, and the
optical properties can be estimated by

EQ-TARGET;temp:intralink-;e012;326;582μðrÞ ¼ CfðrÞμfib þ CaðrÞμadi ; (12)

where CaðrÞ is the adipose tissue volume fraction at location
r, which can be computed by 1 − CfðrÞ.

The absorption coefficients μadi and μfib at wavelength λ can
be calculated as follows:

EQ-TARGET;temp:intralink-;e013;326;506

μfibðλÞ ¼ lnð10ÞεHbO2
ðλÞCHbO2

ðfibÞ þ lnð10ÞεHbðλÞCHbðfibÞ;
μadiðλÞ ¼ lnð10ÞεHbO2

ðλÞCHbO2
ðadiÞ þ lnð10ÞεHbðλÞCHbðadiÞ

(13)

where CHbO2
is the oxyhemoglobin concentration (μM), CHb is

the deoxyhemoglobin concentration (μM), εHbO2
ðλÞ and εHbðλÞ

are the molar extinction coefficients of oxyhemoglobin (HbO2)
and deoxyhemoglobin (Hb), respectively, and εHbO2

ðλÞ ¼
97.4 ðmm−1 M−1Þ and εHbðλÞ ¼ 69.304 ðmm−1 M−1Þ for
λ ¼ 830 nm.23 Hence, the optical coefficients (absorption and
reduced scattering coefficients) μadi and μfib are, respectively,
determined from optical properties of adipose and fibroglandu-
lar based on the data in Table 1.23–25 The breast phantom
included two tumors (denoted as tumor I and tumor II, as
shown in Fig. 1) in a three-dimensional (3-D) Gaussian
shape expressed as SðrÞ ¼ expð−kr−r0k2∕2σ2Þ, where r0 is
the centroid of the tumor, and σ is the standard deviation of
the Gaussian sphere. The optical parameters in the tumors
are given by

Fig. 1 3-D finite-element model of the breast phantom.
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EQ-TARGET;temp:intralink-;e014;63;631

μðrÞ ¼ ½1 − CtðrÞ�½CfðrÞμfib þ CaðrÞμadi�
þ CtðrÞ½μadi þ γðμmal − μadiÞ�; (14)

where CtðrÞ is the tumor volume fraction, γ is a parameter to
control the optical tumor contrast,21 and μmal is the optical coef-
ficient for a malignant tumor calculated from the data in Table 1
using

EQ-TARGET;temp:intralink-;e015;63;546μmalðλÞ ¼ lnð10ÞεHbO2
ðλÞCHbO2

ðmalÞ
þ lnð10ÞεHbðλÞCHbðmalÞ: (15)

We assume that the NIR light source operated in a continuous
wave (CW) mode at 830 nm. The optical signals were collected
with 2622 detectors on the upper surface and 2473 detectors on
the lower surface of the breast phantom. In the numerical experi-
ments with the breast phantom, we set the centroid of tumor I at
(140, 49, 15) mm and the centroid of tumor II at (188, 41,
15) mm in the finite-element coordinate system. To simulate dif-
ferent absorption contrasts, we defined γ ¼ 1.2 for tumor I to
simulate a low-contrast tumor, and γ ¼ 2 for tumor II to simulate
high-contrast tumor. The standard deviations of Gaussian
tumors were assigned as σ ¼ 2.3 for tumor I and σ ¼ 3.6 for
tumor II, respectively. Based on these parametric settings, the
diffusion equation-based forward model was numerically solved
using our in-house finite-element solver to generate CW optical

simulation data. Then, we respectively added 30- and 25-dB
Gaussian noise to generate more realistic datasets.

The image reconstruction algorithm described in Sec. 2 was
applied to identify the abnormal absorption variations from the
simulated datasets. First, the optimization model Eq. (10) was
performed to estimate the positions of tumors. From the dataset
with 30-dB noise level, tumor I and tumor II locations were esti-
mated at (140.18, 47.60, 15.27) mm and (188.33, 40.52,
14.32) mm, respectively. From the dataset with 25-dB noise
level, tumor I and tumor II locations were identified at
(142.38, 48.92, 15.24) mm and (190.71, 41.40, 14.02) mm,
respectively. Furthermore, we established a feasible region
Ω̄ around every determined tumor location. Theoretically,
the greater the absorption intensity value, the larger region
the tumor occupies. From δ�kðk ¼ 1; 2Þ obtained from
Eq. (10), we can roughly estimate sizes of tumor I and
tumor II, respectively. In fact, an approximate formula
Dk ¼ e · δ�k∕ðμm − μ0Þðk ¼ 1; 2Þ was derived from the Beer–
Lambert law to estimate tumor sizes, where μm is the approxi-
mate absorption coefficient of a malignant tumor,26 μ0 is the
approximate absorption coefficient of the normal tissue, and
e is an approximate average size of finite elements. Then, spheri-
cal regions Rkðk ¼ 1; 2Þ of radius Dkðk ¼ 1; 2Þ can be estab-
lished around the determined tumor locations. Hence, we
obtain Ω̄ ¼ R1 ∪ R2. The Ω̄ is of a relatively small extent,
and the number of unknown variables can be greatly reduced
to overcome the underdetermined nature of DOT. In practical
computation, due to the discretization and computational errors,
the radiusDk may be properly increased to ensure tumor regions
in Ω̄. In our simulation, the selected radius was D1 ¼ 7 mm for
tumor I and D2 ¼ 8 mm for tumor II. The optimization model
Eq. (11) was implemented to quantify abnormal absorption var-
iations from two datasets with 30- and 25-dB noise levels,
respectively. Figures 2 and 3 show the reconstructed abnormal
absorption and variations from the simulation dataset with 30
and 25 dB noise levels, respectively. Table 2 presented the
quantification results of image reconstruction. To compare
with the state-of-the-art method, we also conducted the

Table 1 Optical parameters.

Tissue type CHbO2
(μM) CHb (μM)

μ 0
s (mm−1)

at 830 nm

Adipose (adi) 13.84 4.81 0.713

Fibroglandular (fib) 18.96 6.47 0.775

Malignant (mal) 20.60 6.72 0.801

Fig. 2 Reconstruction of abnormal tissues from the dataset with 30 dB noise. (a) The true absorption
slice of the phantom at depth of 15 mm, (b) the corresponding reconstructed absorption slice using the
proposed method, (c) the corresponding slice reconstructed using the CS-based regularization method,
(d) the true variations of abnormalities at depth of 15 mm, (e) the corresponding variations reconstructed
using the proposed method, and (f) the variations reconstructed using the CS-based regularization
method.
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image reconstruction from the same datasets using a compres-
sive sensing (CS)-based regularization method.11,12,14,27 These
results demonstrate that the proposed method can achieve
more accurate and stable reconstructions than the state-of-the-
art CS-based regularization reconstruction method.

4 Discussions and Conclusion
We have proposed a new optical tomographic imaging method
for the detection of breast cancer. This method splits the image
reconstruction problem into the localization of abnormal tissues
and quantification of absorption variations. The localization of
abnormal tissues is performed based on a new well-posed opti-
mization model, which can be solved via DE optimization
method to achieve a stable reconstruction. For the early stage
cancer detection, it is neither correct nor efficient to assume
too many tumors. As far as the detection of a few numbers
of tumors in a breast is concerned, the proposed image
reconstruction method is very efficient to solve the optimization
model of Eq. (10) for the determination of tumor central posi-
tions. Around the determined positions of tumors, the quantifi-
cation of abnormal absorption variations is then determined in
localized regions of relatively small extents. Consequently, the
number of unknown variables can be greatly reduced to over-
come the underdetermined nature of DOT, allowing for accurate
and stable reconstruction of the abnormal absorption variations

in the breast. The numerical simulations based on the realistic
digital breast phantom have been performed to verify the fea-
sibility of this method. The proposed method provides a prac-
tical and noninvasive tool for enhancing the accuracy of tumor
diagnostics.

Our numerical simulations are based on CW excitation,
which provide high signal-to-noise ratio of measured photon
fluence rate. The proposed method can be directly extended
to time-resolved/frequency-domain optical tomography, which
provides more measurement information to enhance accuracy
and stability of image reconstruction. In addition, this proposed
reconstruction method is based on the diffuse approximation
model for high computational efficiency, which works well in
breast tissues with weak absorbing and high scattering. It is
also straightforward to extend our method to more accurate pho-
ton transport models, such as RTE,15 phase approximation,16 or
Monte Carlo simulation.28 At the same time, the graphic
processing unit can be used to achieve high-performance com-
puting to accelerate the computation of the photon transport
models.

Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Fig. 3 Reconstruction of abnormal tissues from the dataset with 25 dB noise. (a) The true absorption
slice of the phantom at depth of 15 mm, (b) the corresponding reconstructed absorption slice using the
proposed method, (c) the corresponding slice reconstructed using the CS-based regularization method,
(d) the true variations of abnormalities at depth of 15 mm, (e) the corresponding variations reconstructed
using the proposed method, and (f) the variations reconstructed using the CS-based regularization
method.

Table 2 Reconstructed results.

Tumor
type γ σ

True tumor
centroids (mm)

Reconstructed positions of tumors (mm)

Radius of
region Ω̄

Average relative error of
reconstructed absorption
coefficients of tumors

30-dB noise 25-dB noise
Dataset with

30 dB
Dataset

with 25 dB

I 1.2 2.3 (140,49,15) (140.18, 47.60, 15.27) (142.38, 48.92, 15.24) 7 (mm) 4.5% 6.7%

II 2 3.6 (188,41,15) (188.33, 40.52, 14.32) (190.71, 41.40, 14.02) 8 (mm) 7.2% 10.5%
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