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Abstract

Significance:A noninvasive method based on surface-enhanced Raman spectroscopy (SERS) of
tears was proposed as a support for diagnosing neurodegenerative pathologies, including differ-
ent forms of dementia and Alzheimer’s disease (AD). In this field, timely and reliable discrimi-
nation and diagnosis are critical aspects for choosing a valid medical therapy, and new methods
are highly required.

Aim: The aim is to evince spectral differences in SERS response of human tears from AD
affected, mild cognitive impaired (MCI), and healthy control (Ctr) subjects.

Approach: Human tears were characterized by SERS coupled with multivariate data analysis.
Thirty-one informed subjects (Ctr, MCI, and AD) were considered.

Results:Average SERS spectra from Ctr, MCI, and AD subjects evidenced differences related to
lactoferrin and lysozyme protein components. Quantitative changes were also observed by deter-
mining the intensity ratio between selected bands. We also constructed a classification model that
discriminated among AD, MCI, and Ctr subjects. The model was built using the scores obtained
by performing principal component analysis on specific spectral regions (i-PCA).

Conclusions: The results are very encouraging with interesting perspectives for medical appli-
cations as support of clinical diagnosis and discrimination of AD from other forms of dementia.
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1 Introduction

Neurodegenerative diseases, particularly affecting aged people, have relevant health and social
costs. Different forms of diseases, often involving serious forms of dementia, are included in this
class of pathology requiring specific clinical treatments to be fronted. Thus, timely and reliable
diagnosis is a critical aspect for choosing a valid medical therapy. A mild cognitive impairment
(MCI) reflects a cognitive decline but not yet a state of dementia and often does not compromise
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daily life activities.1 Alzheimer’s disease (AD) is a more severe neurodegenerative pathology
characterized by a progressive damage of synaptic links and neuronal cells mainly in the
hippocampus brain region. The occurrence of pathological aggregates of proteins including
beta-amyloid fragments (Aβ-plaques) in the interneuronal spaces of brain tissue and the
increased level of tau- and hyperphosphorylated-tau proteins in the cerebrospinal fluid of
AD-affected subjects indicated the relevance of beta-amyloids (Aβ) and tau-protein in the
AD development.2–4 Both substances are biomarkers of AD progression2,4 and are a reliable
sign of a neurodegenerative cerebral process also in the early-stage phase.5–7 These biomarkers
can be transported into the vascular system across the blood–brain barrier (BBB).8,9 The BBB
plays an important role in the selective passage of several substances between brain and blood
systems and in the maintenance and integrity of the brain. A dysfunctional BBB with impaired
ability to clear Aβ and tau protein from the brain has been associated with the development of
AD.10 Traces of these biomarkers are present in the systemic blood circulation and can rejoin the
vascularization of other body districts, as the retina, lens, and lacrimal regions, affecting the
composition of tears.11–13 The relevance of changes occurring in the eye as a consequence
of AD has been reported by Lim et al.14 Consequently, tears are an ideal medium for investigat-
ing changes induced by neurodegenerative pathologies. They are easily accessible and can be
collected using minimally invasive methods.

In the last decades, a large number of studies have been addressed to analyze the tear com-
position by using conventional biochemical methods, as high-performance liquid chromatography,
enzyme-linked immunosorbent assays, or ferric reducing antioxidant power, and have allowed an
exhaustive characterization of this fluid.15–17 These conventional techniques have been largely
superseded by optical spectroscopy methods, such as those based on Raman scattering, that are
less time consuming, do not require specific preliminary preparation of the samples, and have good
sensitivity and specificity. Raman spectroscopy has been used to identify AD biomarkers in blood
serum8,18,19 and saliva,20 and to investigate basic aggregation mechanisms of amyloids.21 Raman
spectroscopy22–25 and surface-enhanced Raman spectroscopy (SERS)26 have also been used to
investigate human tears mainly to diagnose eye diseases. In addition to the direct detection of
biomarkers, Raman and SERS can evaluate the global changes that the pathological state induces
in the tear composition. A relevant change in the protein profiles between tear samples collected
from AD-affected and healthy subjects was observed by Kalló et al.27 using electrophoresis analy-
sis (Bradford method). Filik and Stone28 demonstrated that Raman spectroscopy can be used to
analyze tear composition. However, some limits concerning sensitivity, noise/signal level, and
repeatability also related to the inhomogeneous composition of samples can be evinced.

The development of SERS overcame some limits of conventional Raman spectroscopy.
Indeed, it dramatically increased the sensitivity and opened new perspectives in fluid spectro-
scopic analysis.29–31 For instance, Ryzhikova et al.31 highlighted a significant improvement in
human serum analysis for AD diagnosis. We previously investigated the potential of SERS in the
study of human tears.26 Tear samples were analyzed using a gold-nanoparticle-based substrate
whose SERS enhancement factor was evaluated by employing water solutions of rhodamine 6G.
By comparing SERS signal with the one obtained by conventional Raman spectroscopy, an
SERS enhancement factor of about 4 × 103 was estimated. A direct comparison of SERS and
Raman response of human tears has been also reported, clearly indicating a signal intensity
improvement.26 In this work, we investigated human tear samples collected from informed sub-
jects with ascertained AD and MCI symptoms using SERS. Spectroscopy results were compared
with a reference signal obtained from healthy subjects. Principal component analysis (PCA) and
interval principal component analysis (i-PCA) were used to efficiently and reliably discriminate
spectra, with promising issues for the development of large-scale screening methods for diag-
nosis and discrimination of neurodegenerative diseases.

2 Materials and Methods

2.1 Participants

Eighteen AD affected subjects (7 women, 11 men, and mean age 71� 10 years) and seven
MCI subjects (3 women, 4 men, and mean age 73� 9 years) were included in this study.
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All met the core clinical criteria for AD and MCI of the National Institute on Aging–Alzheimer’s
Association.32,33 The control (Ctr) group was constituted by six healthy volunteers (3 women,
3 men, and mean age 71� 9) without evidence of pathologies or of familial neurological
diseases. All participants underwent a complete ophthalmological examination including the best-
corrected visual acuity test. The demographic and clinical characteristics and the Mini-Mental
State Exam (MMSE) scores of the recruited subjects are shown in Table 1. The study was approved
by the Institutional Review Board of the University of Naples “Federico II” and all investigations
adhered to the tenets of the Declaration of Helsinki (2013). Written informed consent was obtained
from all the enrolled subjects.

2.2 Tears Collection

Tear specimens were collected from the informed subjects and healthy volunteers. Smooth edge
sterile capillary glass tubes, with internal diameter din ¼ 0.2 mm, outside diameter dout ¼ 1 mm,
and length L ¼ 12.7 mm, were used (ACCU-FILL 90 MICROPET by Becton, Dickinson and
Co, Clay Adams, California, USA). During the collection, the subject’s lower eyelid was gently
pulled down, and the tip of the open capillary tube was placed in contact with the tear meniscus
without irritating the conjunctiva. At the least 1.0 μl tear was collected. The samples were stored
at 4°C and tested by SERS within 7 days. Protein concentrations are not altered under these
storage conditions.34

2.3 Surface-Enhanced Raman Spectroscopy

SERS measurements were performed with standard microscope glasses coated by a home-made
colloid of gold nanoparticles (GNPs). Details of the fabrication and characterization of the GNPs
are reported in Ref. 35. The average diameter of the GNP was 27 nm. About 1 μl of tears to
be analyzed was dropped on the dried residual of the GNP colloid and measured a few minutes
after drying. SERS signal spectra were acquired using a Jobin-Yvon instrument by Horiba
Scientific ISA (Osaka, Japan) equipped with a TriAx 180 monochromator, a liquid-nitrogen
cooled charge-coupled detector, and an 1800 grooves/mm grating (final spectral resolution:
2 cm−1). The spectra were recorded in the air at room temperature using a 17-mW-nominal
power He–Ne laser source (wavelength 632.8 nm). The laser beam was focused on a 2-μm2

spot area of the sample surface through an Olympus microscope equipped with 100× optical
objective. The laser power impinging on the sample is expected to be low enough to avoid
significant heating effects, as demonstrated in preliminary measurements performed to optimize
the experimental conditions. We experimentally verified that heating effects are negligible by
measuring Stokes/anti-Stokes Raman response of silicon in similar acquisition conditions to
the ones adopted in the present work (see, for example, Refs. 36 and 37). This is still true
for tears even if their thermal conduction properties are quite different from those of silicon.36

All SERS spectra were acquired using an accumulation time of 180 s. At least three SERS
spectra were measured in different points of the sample area and averaged. For each sample,
the average signal intensity dispersion for each wavenumber point was about 8� 5%. A rep-
resentative spectrum for each class was obtained by averaging all SERS acquisitions from
related samples.

Table 1 Demographic and clinical characteristics of healthy (Ctr), MCI, and AD subjects. Data
expressed as mean� standard deviation. MMSE stands for minimental state examination.

Ctr MCI AD

Age (years) 71� 9 73� 9 71� 10

Women/men 3/3 3/4 7/11

Education (years) 8� 5 9� 5 8� 5

MMSE 26.9� 2.0 26.5� 0.5 18.5� 4.7
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2.4 Data Analysis

2.4.1 Data pretreatment and deconvolution procedure

A numerical procedure based on “wavelet” algorithms was adopted to subtract the background
signal and reduce the noise in the spectra.38 The signal was decomposed in terms of wave-
number-scaled components (wavelets), and hierarchical representation of the data was
obtained. This enabled us to remove signal components due to background and noncorrelated
noise through an inverse process of signal reconstruction. The data treatment was imple-
mented using software routines (wavelet toolbox) of MATLAB® (Version 7.6, MathWorks
Inc., Natick, Massachusetts). In particular, “Bior6.8” biorthogonal wavelets were used. To
compare the data, the spectrum intensities were scaled using the standard normal variate
method, i.e., normalizing the signal to the standard deviation of intensities concerning
the average signal.39 Some examples of SERS raw data are shown in Fig. S1 of the
Supplemental Material. A best-fit numerical procedure based on the Levenberg–Marquardt
nonlinear least-square method (software routines by GRAMS/AI, 2001, Thermo Electron)
was used to deconvolute the spectra in terms of Lorentzian functions to determine the com-
ponent modes, using as fit parameters the centers, widths, and intensities of the Lorentzian
functions. One-way analysis of variance (ANOVA) was used to discriminate relevant changes
in the spectra.

2.4.2 PCA and i-PCA analysis

The fully processed data set of all the average spectra was analyzed by PCA and i-PCA to
describe it using a set of orthogonal eigenvectors separately accounting for the various
sources of the variance in the original data. PCA was performed by analyzing the covariance
matrix after subtracting the mean of the variable.40 The fully processed average spectra
data set was analyzed by PCA. The analysis was performed first on the full spectral window
(400 to 1900 cm−1), then the spectral window was divided into 22 intervals and the PCAwas
performed on each spectral range (interval-PCA, i-PCA). These spectral ranges were selected
by a procedure that is described in detail in Refs. 41 and 42. The first step consists of the
determination of the spectral regions that feature the most significant differences among the
spectra belonging to different disease classes. A reduced set of spectral “features” were
selected using a statistical tool (rank features) included in the “Bioinformatics Toolbox” of
MATLAB® software package that selects numerically the positions and widths of the spectral
regions of potential interest. Once these intervals were obtained, the ones that have specific
fingerprints were selected, and the width of the intervals was optimized to give access to
features assigned to DNA/RNA, lipids/carbohydrate, and proteins. The spectrum intervals
obtained were: 400 to 455, 456 to 553, 554 to 706, 707 to 755, 756 to 834, 835 to 907,
908 to 969, 970 to 1031, 1032 to 1092, 1093 to 1136, 1137 to 1201, 1202 to 1307, 1308
to 1353, 1354 to 1383, 1384 to 1457, 1458 to 1529, 1530 to 1551, 1552 to 1582, 1583 to
1639, 1640 to 1712, 1713 to 1800, 1801 to 1900 cm−1. PCA analysis of the average spectra
full data set was performed on these intervals (i-PCA). All the scores obtained by this pro-
cedure were used to build the new data set. It was inspected to outline the combination of
intervals and principal component (PC) scores that maximize the differentiation of the spectra
depending on their disease class. A number of PC scores and intervals were selected also
taking into account the assignments of the various Raman modes outlined by the deconvolu-
tion procedure. The selected sets of i-PCAs were used to build various classification models.
The classification procedure was performed using the naïve Bayes classification43 algorithm
tool of the “Statistical Toolbox” available in MATLAB® software package. The ability of the
obtained classification models to recover the correct disease class of patients by using the
average tears SERS spectrum was tested evaluating the overall accuracy (total number of spec-
tra correctly classified over the total number of spectra considered) and overall misclassifi-
cation rate. The aim of the procedure was to obtain a model that enabled us to correctly
retrieve all the disease classes of the average spectra.
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3 Results and Discussion

3.1 SERS Measurements

An example of SERS response of tears of a healthy subject is shown in Fig. 1(a) along with a
representative spectrum of the same subject’s tears obtained by conventional Raman spectros-
copy in the same experimental conditions [Fig. 1(b)]. The Raman spectrum does not provide any
valuable information apart from very faint features. Conversely, SERS spectrum clearly eviden-
ces the various contributions of tear components. The main modes indicated in the Fig. 1(a) were
individuated by a deconvolution of the spectrum in terms of Lorentzians. Raman features
typical of proteins are observed in the SERS spectrum shown in Fig. 1(a), where the skeletal
(primary protein structure) region, the amide I, amide II, and amide III bands can be recognized.
The positions of the most relevant peaks are reported in the figure, and tentative assignments of
the modes identified by the deconvolution process are reported in Table 2 together with related
references. In particular, three strong peaks are found at 998, 1349, and 1170 cm−1 and assigned
to phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr), respectively.44 The intense Trp
mode may primarily be due to lysozyme (LZ), one of the major components of tears.22,45

SERS peaks at about 1256 and 1428 cm−1 are assigned to LZ or lactoferrin (LF) in agree-
ment with conventional Raman spectroscopy results for single-component solutions of LF and
LZ,22,45 and with SERS response of LZ.45 These tentative assignments are in agreement with
previous studies showing that the major components of tears are immunoglobulins (IgA), lac-
toferrin, lysozyme, lipocalin, and albumin.17,46 Among these components, lactoferrin and lyso-
zyme have an important role in the eye functionality; indeed they provide defense mechanisms
against infective agents.47 Figure 2 shows the average SERS spectra for the three classes of
subjects here considered (Ctr for control/healthy subjects; MCI for subjects suffering from
MCI; AD subjects suffering from AD). The average relative dispersion of the signal intensity
is 24� 17% for the control set, 21� 14% for the MCI data, and 37� 8% for the AD data. The
three spectra in Fig. 2(a) share some common features even if differences can be noticed. Spectra
obtained by subtracting the control spectrum from the MCI and AD signals are reported in
Fig. 2(b). In some spectral regions, the intensity variation is larger than the data dispersion.
In particular, statistical deviations were determined by one-way ANOVA test and are indicated
in Fig. 2(b) for AD and MCI signals. Positive deviations are found at 1007 and 1591 cm−1 and
a negative deviation at 1459 cm−1 for the data related to the AD class. A positive deviations at
1563 cm−1 and negative deviations at 850 to 885, 996, 1244, 1343, and 1650 cm−1 are deter-
mined for the data of MCI class. Two large intensity deviations of MCI signal occur at 1063 and
1500 cm−1 but they were be not further considered being close to minima of the SERS spectrum.

Fig. 1 (a) SERS spectrum of tears from a healthy subject. The acquisition time was 180 s. The
experimental spectrum (black curve) was fitted by a convolution of Lorentzian functions. The gray
curve is the resulting fit curve. The main modes found are indicated. (b) Spectrum of tear obtained
by conventional Raman spectroscopy in similar acquisition conditions.
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Fig. 2 (a) Averaged SERS spectra of tear samples from healthy subjects (Ctr-green line), mild
cognitive disease-affected subjects (MCI-blue line), and AD-affected subjects (AD-red line). The
gray areas represent the standard deviation of the signal intensities within the considered data
classes. Each of the reported spectra was obtained by averaging all SERS spectra of subjects
belonging to a single class. SERS spectra were obtained by 180 s long acquisitions. The average
relative dispersion of the signal intensity is 24� 17% for the control set, 21� 14% for the MCI
data, and 37� 8% for the AD data, respectively. (b) Signal differences concerning the control
data of AD (red area) and MCI (blue area) spectrum. The green lines indicate the signal dispersion
range (0.68 of the standard deviation). The statistically significant signal differences (p-value
<0.05 in the one-way ANOVA statistics) are indicated by blue (MCI) and red (AD) marks,
respectively.

Table 2 SERS of human tears: assignment of main modes according to Refs. 23 and 44
(def, deformation; wag, wagging; str, stretching; bend, bending; sciss, scissoring).

Mode position (cm−1) Mode Assignment ΔI(AD) ΔI (MCI)

641 COO− wag — — —

868 to 885 — — — ↓

998 to 1000 symm ring CC str. Phenylalanine ↑ ↓

1123 NHþ
3 def. — — —

1163 to 1175 N-H wag — — ↑

1243 to 1250 β-sheet Amide III (LF, LZ) — ↓

1291 α-helixCH2 wag Amide III

1340 to 1350 C─H def Trp; LF, LZ — ↓

1428 to 1435 CO− symm. str. LF, LZ — —

1459 — — ↓ —

1516 to 1533 C─C str Amide II ↓ —

1566 NH2 sciss — — ↑

1591 — — ↑ —

1612 Indole N-H, C═O str. — — —

1630 to 1640 α-helix Amide I — ↑
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The occurrence of an intensity increase or decrease of the SERS signal of AD and MCI
samples with respect to the Ctr sample-related spectrum is indicated in Table 2 by ↑ and ↓ sym-
bols, respectively. It is noteworthy to note that SERS spectra fromMCI-affected subjects exhibits
a signal intensity lower than the reference spectrum (from healthy subjects) for modes at 1343
and 1243 cm−1. These modes are assigned to the C-H deformation and amide III β-sheet,
respectively.24 Their intensity change indicates a modification of protein secondary structures
that can result from altered physiological conditions. Kim et al.24 reported a correlation
between the I1342∕I1243 ratio of SERS modes at 1243 and 1342 cm−1 and eye disease state
in human tears. They found an increase of the I1342∕I1243 ratio in subjects affected by
adenovirus (I1342∕I1243 ¼ 1.13) and herpes simplex (I1342∕I1243 ¼ 3.73) versus a control value
I1342∕I1243 ¼ 0.8. In the present case, the mean value estimated for I1342∕I1243 is 1.1� 0.4 for
healthy subjects, 1.5� 0.7 for samples from AD class, and 1.8� 0.7 for tear samples from MCI
class. These average ratio values are larger in AD and MCI cases than in control; however,
the data dispersion is too large to find a significant correlation.

Figure 3 shows a comparison between the average SERS spectra of healthy (Ctr), MCI- and
AD-affected subjects for the amide III (1100 to 1400 cm−1) region together with their decon-
volution in terms of Lorentzian functions. The three main components in the Ctr spectrum occur
at 1173, 1248, and 1346 cm−1. These modes are compared with the equivalent components of
MCI and AD spectra. The mode found at 1173 cm−1 in the Ctr spectrum and assigned to tyrosine
is centered at a lower wavenumber value (about 1165 cm−1) in the MCI and AD spectra. The
level of tyrosine is expected to decrease in intensity during the process of amyloid fibril for-
mation,48 and the observed weakening of the mode energy indicates a degradation of protein
structure. The average SERS intensity of the MCI spectrum in the 1244 to 1350 cm−1 range
is lower than the intensity in the other two cases. The AD spectrum deconvolution is charac-
terized by relatively broader modes, which indicate an increased disorder of the protein secon-
dary structure. A shift to lower energies of SERS modes is also observed in the MCI and AD
spectra of Fig. 4, in which the amide I and amide II band regions are reported with the result of
the signal deconvolution in terms of Lorentzians. The amide I band of the spectrum (Ctr) from
healthy subjects is centered at 1639 cm−1. This band is shifted to 1625 and 1628 cm−1 in MCI
and AD cases, respectively. These changes could be due to an increase contribution of the ran-
dom coil component and a decrease of the intensity of the α-helix-related mode. The overall
effect of the combination of these two intensity changes is to move the center of the amide
I band toward lower wavenumber shift values. It is noteworthy that also hydration causes a faint
change of α-helix contribution as reported in a Raman study on lysozyme.49 It is interesting to
note that the intensity of the amide I band is lower than the control data only in the MCI case.

Fig. 3 Comparison of averaged SERS spectra of tears from AD-affected (red curve), MCI-affected
(blue curve), and Ctr healthy (green curve) subjects in the amide III region. All SERS spectra were
obtained by 180 s long acquisitions. The mode peaks resulting from the fitting spectrum decon-
volution are reported together with the experimental data. Thick curves indicate selected modes
featuring larger differences with respect to the control spectrum (see text).
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All the observed changes suggest a modification of the secondary structure of the proteins
stronger in MCI samples than in AD samples. Notwithstanding the evidence that the changes
in the tear composition induced by different physiological conditions influence their SERS
response, it is hard to obtain a clear indication on the occurrence of AD and MCI diseases due
to the presence in the samples of confounder proteins having strong spectral similarities with
disease markers as amyloids and tau protein.50

3.2 Patient Clinical State Recall Using i-PCA Results

SERS spectra of tears reported herein are very complex as expected for these body fluids. In
addition, the differences among SERS spectra of tears from subjects with different clinical states
are sometimes very subtle and are mainly localized in some specific spectral ranges. Notably, we
found that PCA performed on the whole spectral range did not differentiate the subtle changes
that occurred in the examined spectra. To better evidence these differences and to profit from
them to classify the spectra, we performed the PCA in the intervals reported in Sec. 2.4.2
(i-PCA). The scores of the first seven PCs obtained for all the intervals were examined. The
score plots for the single intervals do not suggest simple grouping related to the state of dementia.
As examples, the i-PCA results for some of the intervals are reported in the Supplemental
Material in terms of score plots and loadings of the first two components (see Fig. S2 in the
Supplemental Material). This finding suggested the need for a complex model for classification.
Accordingly, the score coefficients obtained by i-PCA are used to build models enabling them to
obtain the correct classification of the spectrum to one of the dementia disease classes of the
corresponding subject. The classification models were built using the naïve Bayes classification
algorithm,43 according to the procedure described in Sec. 2.4. The ability of the various models
to obtain the correct classification of the average spectrum to one of the disease classes was
barely evaluated by considering the overall accuracy in order to prove that the model itself
is able to recall the correct disease class for all the considered spectra. To obtain a 100% accuracy
in recalling the disease class of the spectra dataset used to build the model by using the SERS
spectra of tears, we built a model using the scores of PC3, PC4, PC5, and PC6 calculated in the
intervals 456 to 553, 707 to 755, 1202 to 1307, 1308 to 1353, 1354 to 1383, 1552 to 1582, 1583
to 1639 cm−1, which enabled us to obtain the correct recall of all the spectra (i.e., 100% of
overall accuracy and 0% of overall misclassification rate) (representative outcomes of the i-PCA
in terms of score higher-order score components are reported in Fig. S3 in the Supplemental
Material). Since the problem is a multiclass classification (i.e., a classification procedure involv-
ing more than two classes) (see Ref. 51 and references therein) because three clinical states are

Fig. 4 Comparison of averaged SERS spectra of tears from AD-affected (red curve), MCI-affected
(blue curve), and Ctr healthy (green curve) subjects in the 1500 to 1700 cm−1 range including
amide II and amide I bands. All SERS spectra were obtained by 180 s long acquisitions. The
mode peaks resulting from the fitting spectrum deconvolution are reported together with the exper-
imental data. Thick curves indicate selected modes featuring larger differences with respect to
the control spectrum (see text).
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considered and the dataset is small and unbalanced (6, 7, and 18 patients belong to the Ctr, MCI-
affected, and AD-affected disease classes, respectively), it was not possible to perform further
studies using standard validation procedures for the model. Nevertheless, these results are
encouraging since they confirm the ability of correctly recovering the clinical state of patients
by analyzing tears SERS spectra, thus offering proof of the potential of the method that could be
usefully applied for classifying spectra acquired from new enrolled patients. These results boost
further studies involving more and properly selected patients, and SERS spectra that will allow to
test the efficacy of the use of different intervals for i-PCA, and/or the use of different classi-
fication methods including neural network algorithms.

4 Conclusions

Optical spectroscopy methods can provide a unique way for analyzing body fluids, enabling fast,
sensitive, noninvasive, and reliable diagnosis, as well as large-scale medical screening cam-
paigns. We analyzed SERS response of tears, aiming to evince differences in the spectra acquired
from tears collected from AD subjects compared to samples from healthy subjects and subjects
with ascertained mild-cognitive symptoms. Differences were found in various spectral regions.
In particular, the spectral region related to protein components showed the largest changes indicat-
ing conformational changes that can be mainly ascribed to lactoferrin and lysozyme. In fact, as
aforementioned, these substances are among the principal tear components. In addition, the deter-
mination of I1342∕I1243 ratio allowed us to obtain quantitative information on changes related to
pathological states, similarly to those reported for inflammatory alterations. Even if it was not
possible to discriminate specific biomarkers of AD, the global SERS response reflects small but
interesting modifications of the tear composition that can be attributed to altered levels of specific
pathological and disease-stimulated substances. The interval partial component analysis (i-PCA) of
the spectra allowed us to discriminate AD-affected subjects from healthy and MCI-affected sub-
jects. The classification accuracy of the built method was very encouraging with interesting per-
spectives for medical applications as support of clinical diagnosis and discrimination of AD from
other forms of dementia. Thus, the proposed method provides useful information regarding the
diagnostic classification of subjects with cognitive impairment and deserves attention and an addi-
tional systematic study on a large number of subjects.
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