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Abstract

Significance: The use of the transscleral illumination approach has the potential to simplify the
optical design of fundus cameras. In particular, this approach could allow the use of smaller and
cheaper cameras that are easier to use by non-specialists, thereby facilitating a wider spread of
eye disease screening programs.

Aim: Our aim was to investigate the suitability of transscleral illumination in a fundus camera
system. In particular, we explored the impact of the illumination spectrum and the eye pigmen-
tation on the quality of the image. These factors have never been systematically investigated
before in the literature on transscleral illumination.

Approach: A fundus camera was constructed using transscleral illumination. We studied the
influence of eye pigmentation and choice of illumination spectra on the image quality for a group
of 10 individuals with varied skin pigmentation, ranging from pale white (North-European) to
darkest brown (African). The influence of the light source spectrum on the image quality was
assessed using wavelength filters.

Results: There was a difference of a factor of 100 in the signal level of retinal images between
individuals with low and high skin pigmentation. The image contrast was highest using illumi-
nation wavelengths of 500 to 600 nm. The illumination level can be adjusted to obtain high-
quality images for highly pigmented eyes while keeping the system eye-safe.

Conclusions: We have demonstrated that a fundus camera with transscleral illumination can
provide high-quality images. However, the variations observed in scleral and retinal pigmenta-
tion in a practical setting require a system that must be able to adapt illumination and/or exposure
to the individual patient.
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1 Introduction

A number of common eye diseases can be diagnosed using retina images. A prominent example
is diabetic retinopathy, which is a leading cause of vision loss in many developed countries.1

Other examples include glaucoma,2 age-related macular degeneration,3 retinopathy of prematu-
rity,4 and malarial retinopathy.5 Early screening of these diseases can simplify treatment and
prevent complications leading to blindness.6 Currently, this type of screening is performed at
hospitals or other specialized institutions using expensive fundus camera systems that capture
high-resolution retina images. In countries where this type of healthcare service is not available
for the majority of the population, such screening is simply not possible. Therefore, a compact,
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handheld, low-cost, and easy-to-use device that enables early screening, would increase the
accessibility of this technology and enable widespread early diagnosis.

The most common method to construct a fundus camera is to both illuminate and image
through the pupil. This principle is widely used in stationary fundus cameras and provides
high-quality images, but it has several drawbacks: complicated optics are needed to avoid reflec-
tions (the same lens is used both for imaging and illumination), a small imaging aperture pro-
vides a limited field-of-view, mydriatic dilation of the pupil is often required before imaging, and
it is bulky in size.7 Several new approaches have been proposed to address these issues.8

One possible way to simplify the optical design and make such cameras more compact is to
separate the illumination and imaging optical paths such that the retina is not illuminated through
the pupil. Various illumination paths have been investigated, such as transscleral (both contact
and contactless),4,9–12 transpalpebral,13 and transcranial.14 These approaches obtain a wider field-
of-view, eliminate superficial specular reflections, illuminate the fundus uniformly due to a
highly scattering illumination path, and allow for simpler optical design and larger tolerances
in optical components.9 The latter points are especially important for a compact, low-cost, hand-
held camera for early screening. However, because these methods illuminate through highly
scattering and absorptive media, they require more power for the illumination of the retina.

Recent research on transscleral illumination designs10,11 has shown that this approach enables
the design of compact devices with sufficient image quality. However, these systems have not
been tested on large groups of people, and some physiological parameters have significant
impact on the applicability of this approach. The most critical parameter is the total eye pig-
mentation, which is the combined pigmentation in the choroid and retinal pigment epithelium.
This parameter differs widely across the population15 and affects the transmission of light
through the sclera, thereby significantly influencing the optical signal levels and the resulting
quality of the images. Toslak et al.16 obtained retinal images using trans-pars-planar illumination
from a subject with high pigmentation, but they do not provide further details on pigmentation
level or quantitative influence of pigmentation on signal levels. The choice of the illumination
source (especially its wavelength) also has an effect on image quality and contrast, which is
important for detection of specific diseases (e.g., diabetic retinopathy17).

To evaluate the impact of eye pigmentation and the illumination spectrum on retina image
quality, a fundus camera with transscleral illumination was constructed, and experiments were
performed using different illumination spectra. Individuals with different eye pigmentation were
examined; however, eye pigmentation levels were not independently evaluated. The results show
that the illumination spectrum strongly influences the image contrast, and that differences in eye
pigmentation cause differences in signal levels; in particular, the signal level between eyes with
the lowest and highest pigmentation differs by a factor of 100. Both of these findings are crucial
for the design of a fundus camera with transscleral illumination.

2 Method

2.1 Optical Setup

The optical setup used in this work is shown in Fig. 1. The retina is imaged by a camera with a
camera lens in combination with an ocular. We used non-contact transscleral illumination,
wherein the LED illumination is imaged onto the sclera at an angle of ∼30 deg relative to the
optical axis of the camera system. The position of the LED spot on the sclera can be adjusted,
as shown in Fig. 2, to investigate the image quality as a function of the spot position.

The positioning of the eye relative to the entrance pupil of the ocular, as well as the correct
focusing of the system, are critical for good imaging. To ensure the correctness of these param-
eters, an LED in a spacer ring was placed in front of the camera sensor to illuminate the sensor
chip such that a faint pixel grid is observable to the subject when the eye is in the correct position
and the optical system is in focus. The subject uses a chin rest to maintain the steady position of
their head.

We used a DBK 33UX264.AS USB 3.0 color camera from The Imaging Source (2448 ×
2048 pixels), which was fitted with a Kowa 50 mm f∕2.8 lens and a Kowa TE-11WZ ocular
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with 17-mm eye relief. The illumination has a working distance of 40 mm. We used a Chiyi
CS1002-PF camera to capture images of the sclera and the illumination spot. The capture was
synchronized with retina image capture to document illumination position for all retina images.
In Fig. 3, we compare the field-of-view of our retina camera with a fundus image taken with
a professional camera Zeiss Visucam PRO NM, with 45-deg external field angle. From this

Fig. 2 Different light source positions. These images are captured synchronously with retinal
images, to document the illumination position. It is worthy to note that due to over-exposure of
the illumination, the spot appears larger than its actual size.

Fig. 3 Fundus image taken with Zeiss Visucam PRONM (red) superimposed on image taken with
our setup (green).

Fig. 1 Optical setup with adjustable illumination.
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comparison, we estimated the field-of-view of our camera to be 70-deg external angle (or 105
degrees eye angle). With 1400 pixels within the field-of-view, we estimated our resolution to be
∼15 μm (based on an eye radius of 11 mm). The relative spectral response of the camera sensor
is shown in Fig. 4.

For the illumination, we used a 1 × 1 mm2 LUXEON Rebel Lime LED (with a spectrum
centered around 560 nm). The illumination path is a 3:1 imaging of the LED onto the sclera.
The normalized LED spectral photon flux is shown in Fig. 5 along with the photon flux inte-
grated from long wavelengths toward shorter wavelengths. Therefore, the y-value represents the
photon flux that passes through a longpass filter.

Bartczak et al.17 investigated the influence of the illumination spectra on the contrast and
quality of fundus images. They optimized the illumination spectrum to increase the contrast
of a variety of features on the retina. It is worth noting that most features require illumination
at wavelengths between 500 and 600 nm for optimum contrast. Additionally, Toslak et al.16

investigated the differences in observable features in retina images illuminated with LEDs of
different central wavelength.

Considering transpupilar illumination (utilized by traditional fundus cameras), the illumina-
tion spectrum (source spectrum) is the same as the spectrum incident on the retina. However,
in the case of transscleral illumination (our system), the illumination will experience significant
absorption, particularly through the choroid and retinal pigment epithelium layers. This absorp-
tion will be strongest in the short-wavelength region. Therefore, a green or lime LED may be a
good starting point for transscleral illumination. Toslak et al.13 used a lime LED in their study
and reported a slightly red-dominated transmission spectrum.

Fig. 4 Camera spectral response in different channels.
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Fig. 5 Cumulative relative photon flux (blue, solid line) and spectrum (green, dashed line) from the
lime LED.

Stepanov, Thorstensen, and Tschudi: Impact of illumination spectrum. . .

Journal of Biomedical Optics 076003-4 July 2021 • Vol. 26(7)



A set of long-, short-, and band-pass filters were used in the illumination path to system-
atically investigate the image contrast obtained from various wavelength bands.

2.2 Eye Safety

For eye safety calculations, we used ISO 15004-2:2007—Ophthalmic instruments—Part 2:
Light hazard protection. This standard provides separate limits for the anterior parts of the eye
and for the retina, for photochemical damage (short wavelengths) and thermal damage (primarily
longer wavelength) for different wavelengths, pulse durations, etc. To calculate the exposure
levels on the anterior parts of the eye, we measured the power incident on the sclera to be
80 mWon a 2.8 × 2.8 mm rectangle. Our illumination is only switched on during the exposure,
with a pulse duration of 150 ms. For exposure levels on the retina, we assume, as an absolute
worst-case scenario, that the light passes un-attenuated through the sclera, maintaining the illu-
minated area when reaching the retina.

According to the ISO standard, a maximum of 10 J∕cm2 weighted irradiance is allowed on
the retina to avoid concerns related to photochemical hazard. To evaluate the retinal photochemi-
cal hazard, one needs to integrate over the illumination power spectrum weighted by the aphakic
photochemical hazard weighting function A

EQ-TARGET;temp:intralink-;sec2.2;116;520HA−R ¼
X

Eλ · t · AðλÞ · Δλ:

For the calculation of the retinal photochemical hazard, the LED spectrum shown in Fig. 5 is
weighted with the photochemical hazard weighting function from the ISO standard. Since the
lime LED is a phosphor-converted blue LED, we observe a slight blue remnant at approximately
420 nm. At these wavelengths, the hazard weight is ∼100 times greater than that at 550 nm, and
therefore, the low power at this short-wavelength actually dominates the photochemical hazard.
Thus, it is not sufficient to base the hazard calculations on the peak wavelength of the LED. To
minimize the photochemical hazard while maximizing light throughput, a 500-nm longpass filter
was placed in front of the LED. By integrating the product of the filtered LED power spectrum
and the hazard function, we determined an equivalent exposure level of 1.9 mJ∕cm2. Comparing
with the exposure limit of 10 J∕cm2, the eye can thus be exposed more than 5000 times without
reaching the limit exposure.

Retinal thermal hazard is calculated similarly. The limit for pulsed instruments is given by
10
dr
· t3∕4 J∕cm2 ¼ 1.4 J∕cm2. The retinal thermal exposure is calculated by weighting the illu-

mination power spectrum with the thermal hazard weighting function R, which for our wave-
lengths is equal to 1:

EQ-TARGET;temp:intralink-;sec2.2;116;301HVIR−R ¼
X

Eλ · Δ · t · RðλÞ · Δλ:

In our case, HVIR−R ¼ 0.16 J∕cm2. Finally, the anterior segment visible and infrared radi-
ation radiant exposure limit is 25 · t0.25 J∕cm2 ¼ 15.5 J∕cm2, and the exposure is given as

EQ-TARGET;temp:intralink-;sec2.2;116;242HVIR−AS ¼
X

Hλ · Δλ:

In our case, HVIR−AS ¼ 0.16 J∕cm2. The applicable limit values and the measured/simulated
exposure levels are listed in Table 1. In our experiments with bandpass-filtered illumination,

Table 1 Exposure levels and safety limits according to ISO
15004-2:2007.

Limit (J∕cm2) Exposure level

Anterior thermal 15.5 0.16 J∕cm2

Retinal thermal 1.4 0.16 J∕cm2

Retinal photochemical 10 1.9 mJ∕cm2
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we use the same LED, but selectively removed parts of the illumination spectrum by filtering.
In this process, optical power, and thereby exposure level get reduced. Thus, our bandpass-
filtered illumination is eye-safe.

From the table, we observe that the measured and estimated exposure values are far lower
than the specified limits, even with our worst-case scenario of zero attenuation and beam expan-
sion for the retinal limits. Therefore, it was concluded that the system is eye-safe.

2.3 Study Subjects and Procedure

We recruited 10 healthy adults with different skin pigmentations under the assumption that eye
and skin pigmentation are correlated;15 see Table 2. The eye pigmentation is the combined
pigmentation in the choroid and retinal pigment epithelium. The study was pre-approved by
the Norwegian Centre for Research Data and conducted in accordance with the Declaration of
Helsinki with written consent acquired from each subject before the study. Beyond age, sex,
and skin pigmentation, no personal or any other data was collected. The skin pigmentation
was qualified using the Fitzpatrick scale.18 The range 1 to 6 covers skin types from pale white
(North-European) to the darkest brown (African).

For each subject, several images were captured using different wavelength filters in the illu-
mination path. Sample images of the retina are shown in Fig. 6. We varied the position of the
illumination spot on the sclera from the edge of the cornea to the corner of the eye (see Fig. 2).
The analog gain of the sensor was varied to obtain usable signal levels from eyes with a high
pigmentation level.

For each image, we computed the average signal level from the optical disk and the contrast
ratio between the blood vessels and background. The contrast ratio provides an indication of
usable information contained in the images to detect abnormalities. The images were normalized
with respect to the analog gain.

Due to a lack of images with disease markers, we used the contrast between blood vessels
(arteries and veins) and the background of the retina as a proxy for image quality.

We obtained several images with different filters (see Fig. 7) and analyzed the image contrast
using the following formula:

EQ-TARGET;temp:intralink-;sec2.3;116;247contrast ¼ R − V
σV

;

where R is the average signal level from the retina (background), V is the average signal from
blood vessels, and σV is the standard deviation of signals from the blood vessels. There are many
methods to segment blood vessels in retina images.19 In these examples, the images were seg-
mented manually as the number of images was low and there was considerable variation in the
signal and contrast levels.

3 Results and Discussion

3.1 Impact of LED Spectra on Image Quality

The computed contrast values for the red and green channels of the images are shown in Fig. 8.

Table 2 Test subject statistics.

Age, mean (standard deviation) 38.8 (5.23)

Number of subjects (male/female) 10 (6/4)

Eye color (number of subjects) dark brown (3), brown (6), blue (1)

Skin pigmentation (number of subjects) 6 (1), 5 (2), 4 (1), 3 (2), 2 (3), 1 (1)
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Fig. 7 Retina images obtained using different bandpass filters. The images are normalized for
presentation.

Fig. 6 Images taken without a filter [panels (a) and (c)] and with a 600-nm shortpass filter [panels
(b) and (d)]. The blood vessels show a higher contrast in the shortpass filtered image. Note that
when comparing the green camera channel (bottom row), (c) the un-filtered and (d) filtered images
show very different information content.
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We observe that the images illuminated with wavelengths from 500 to 600 nm showed the
highest contrast. This agrees with the results reported by Bartczak et al.,17 and it is as expected
from examining the absorption spectrum of both oxygenated and de-oxygenated hemoglobin
(Fig. 9). The contrast measure is highest in the green channel, as this channel has the highest
spectral response when illuminating with wavelengths shorter than 600 nm. In Figs. 6(c) and
6(d), we can clearly observe the importance of wavelength filtering. While both of these images
are taken using an LED with a peak wavelength of 565 nm (green), and both images show the
green channel of the camera, the contents of the two images are radically different. It is quite
clear that image (c) is dominated by long-wavelength illumination and thus shows far lower
contrast for the blood vessels clearly observable in image (d).

It is interesting to compare the images captured with the 600-nm short-pass and 600-nm
longpass filters (Fig. 10). The shortpass-filtered image shows a high contrast of both the
arteries and veins, whereas the longpass-filtered image shows far less contrast and presumably
shows only veins as only de-oxygenated hemoglobin absorbs at wavelengths longer than
600 nm.

Figure 11 shows signal levels in a series of images captured with a longpass filter. We plot the
signal in the green channel of the camera along with relative photon flux obtained from the LED
(Fig. 5) versus the longpass cut-off wavelength. It can be observed that the strong increase in the
LED flux at wavelengths shorter than 650 nm leads to only a moderate increase in the received
signal as a result of the strong attenuation at shorter wavelengths.

The observed data show that the short-wavelength light is far more strongly attenuated than
the long-wavelength light. Even though the green portion of the LED signal is far stronger than
the red and infrared, there is only a modest increase in the signal, such as when transitioning from
a 600- to a 500-nm longpass filter.

Fig. 8 Contrast between the blood vessels and background using different filters. The contrast is
high when using wavelengths shorter than 600 nm, wherein the blood attenuation is high (see
Fig. 9). The contrast is highest using the green channel, and the response is highest at these
wavelengths.

Fig. 9 Absorption spectra of oxygenated (HbO2) and de-oxygenated (Hb) hemoglobin.
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To quantify the influence of wavelength on the LED spectrum after transmission through
the sclera, we assume that the camera signal can be described as follows:

EQ-TARGET;temp:intralink-;sec3.1;116;293SðλÞ ∝ PðλÞ · TðλÞ · QEðλÞ;

where SðλÞ is the signal level at wavelength λ, PðλÞ is the photon flux, TðλÞ is the transmission
through sclera, and QEðλÞ is the camera response. Please note that we did not attempt to extract
optical properties such as absorption coefficients or optical path length. The transmission will be
affected by both these parameters, with optical path length being dependent on wavelength-
dependent scattering. Nevertheless, we can extract valuable information about photon transport
through the sclera using the equation above. The relative transmission can be estimated using
the below expression:

EQ-TARGET;temp:intralink-;sec3.1;116;178TðλÞ ∝ SðλÞ
PðλÞ · QEðλÞ

By taking the derivative of the signals in Fig. 11 and extracting the average quantum effi-
ciency in our wavelength bands from Fig. 4, we may estimate the relative wavelength depend-
ence of transscleral light transmission (Fig. 12). There is approximately a 10-times greater
transmission at 650 nm compared with that at 550 nm. An exponential function was fitted to
the relative transmission, giving αeλ∕50, where λ is the wavelength of the light source (in nm) and
α is a scaling constant. This exponential fit was used to estimate the modified LED spectrum

Fig. 11 Relative photon flux from the LED (red, circle marks) and the signal in the green channel
(green, square marks). We observed that the short-wavelength light is more strongly attenuated
than the long-wavelength light.

Fig. 10 Images obtained with (a) 600-nm shortpass and (b) 600-nm longpass filters, thereby
demonstrating the good contrast obtained using wavelengths in which hemoglobin absorption
is high.
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after transmission through the sclera (Fig. 12). While this method provides a rough estimate only,
it may be observed that the lime LED has a maximum photon flux in the deep-red region (around
650 nm) after transmission through the sclera, and a significant infrared tail is present. As seen in
Figs. 6, 7, and 8, and as discussed by Bartczak et al.,17 long-wavelength light will reduce contrast
for many disease markers.

3.2 Illumination Positioning on Sclera

Wang et al.10 and Toslak et al.11 reported fairly significant variations in the transmitted signal as a
function of the position of the illuminated spot on the sclera. The width of the pars plana trans-
mission peak reported by Wang et al.10 was ∼3 mm. With our 2.8-mm wide illumination and a
spacing between data points of 2 to 3 mm, it should be possible to observe this transmission
peak. Utilizing the illumination positions shown in Fig. 2, we analyzed the transmitted signal on
two subjects with low and high pigmentation (levels 1 and 5 on the Fitzpatrick scale), shown in
Fig. 13. We can observe that the signal level fluctuates by ∼20%; however, we do not observe a
highly transparent pars plana, as was reported by Wang et al.10 and Toslak et al.11. From our
experience, the preferred illumination location in our setup is toward the corner of the eye, where
signal is high for the two test subjects shown in Fig. 13, and the relatively large separation
between illumination and imaging helps reducing the amount of stray light into the imaging
system.

(a) (b)

Fig. 12 (a) Blue curve with circle marks: Relative transmission through the sclera (normalized to
the value at 725 nm) estimated from the LED photon flux and the received signal; see Fig. 11. Red
curve: fit to the transmission data: αeλ∕50, where λ is the wavelength of the light source (in nm) and
α is a scaling constant. (b) Original LED spectrum (blue, solid line) and modified spectrum after
transmission through sclera (red, dashed line).

Fig. 13 Signal levels as function of position of illumination spot on the sclera. The reported signal
levels are after application of digital gain.
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3.3 Skin Pigmentation and Image Quality

One of the main aims of our study is to investigate and quantify the influence of eye pigmen-
tation on the signal level and the quality of the retina images obtained using the transscleral
illumination approach. This will directly affect the applicability of this approach in practice.
Previous studies10,11 have not included any detailed discussion on eye pigmentation.

To analyze the influence of pigmentation, a wide range of subjects with different skin pig-
mentations were recruited. We used the Fitzpatrick scale18 to estimate the pigmentation. We used
both images taken without a filter and those with a 600-nm shortpass filter. The computed signal
levels were normalized with respect to the analog gain.

The results (Fig. 14) show a two orders-of-magnitude difference in the signal levels between
subjects of the lowest and highest skin pigmentation. One explanation for the variation in the
signal level for subject with different pigmentation levels could be that skin pigmentation (which
we assess) does not always correlate well with eye pigmentation. Several actual retina images
captured from subjects with different pigmentation are shown in Figs. 15 and 16.

3.4 Potential Fundus Camera Design

A versatile fundus camera must be functional regardless of eye pigmentation levels. With our
observation of a difference in signal levels depending on eye pigmentation by a factor of 100,
it is obvious that a functional transsclera illuminated fundus camera will require some level of
adaptive illumination and exposure. A red or infrared pre-flash can be used for both exposure

(a) (b)

Fig. 14 Impact of skin pigmentation on signal level. (a) Signal in green channel, using a 650 nm
shortpass filter. (b) Signal in the red channel, without filter. Each range bar shows the minimum,
the maximum, the sample median, and the first and third quartiles. The signal level between eyes
with low and high pigmentation differed by a factor of 100.

Fig. 15 Retina images from subjects with different pigmentation levels. The images are normal-
ized for presentation. Only the most pigmented eyes suffered from insufficient image quality.
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estimation and camera auto-focus. This approach uses lower illumination power, thereby keep-
ing the retinal illumination hazard as low as possible.

Our current design and illumination source are suitable for subjects with low-to-medium
pigmentation, but the image quality for highly pigmented eyes is poor (Fig. 15, left) due to low
signal levels and a poor signal-to-noise ratio.

A quantitative assessment indicates that signal levels should be above 400 to 800 photo-
electrons per pixel (10 to 20 counts) with an illumination range of 500 to 600 nm. This means
that the signal must be increased by a factor of 10 to obtain sufficient image quality for highly
pigmented eyes. While the exposure time cannot be much higher than the current value of
150 ms (to eliminate the influence of eye movements), it can be seen from Sec. 2.2 that the
illumination levels can safely be increased by a factor of 10. Illumination can be increased
either by increasing the intensity (higher hazard exposure compared to the current design),
or by increasing the illuminated area while keeping intensity constant (same hazard exposure
as in the current design).

4 Conclusions

A retina camera that utilizes transscleral illumination was constructed and tested on a number of
subjects with different pigmentation levels (ranging from 1 to 6 on the Fitzpatrick scale) and
using different illumination spectra. Our results provide new insight into the factors impacting
practical applicability and design of transcleral fundus cameras.

A high contrast between the blood vessels and retinal background was observed in the images
when illuminating with wavelengths in the range of 500 to 600 nm. A detailed analysis of the
data demonstrated that the light transmission through the sclera can be approximated by αeλ∕50,
where λ is the wavelength of the light source (in nm) and α is a scaling constant.

A difference in the transmitted signal by a factor of 100 was observed between individuals
with low and high skin pigmentation. To ensure that the proposed transscleral fundus camera is
suitable for both low and high eye pigmentation, the illumination and/or exposure must be
adapted to the eyes of each patient.

We have shown that it is possible and eye-safe to use transscleral illumination to obtain high-
quality fundus images, even for highly pigmented eyes. In our setup, it is estimated that a tenfold
increase in the illumination power will be required to achieve sufficient quality images for highly
pigmented eyes. Finally, it was concluded that the illumination wavelengths ranges should range
from 500 to 600 nm or 550 to 600 nm to obtain high contrast images, wherein the latter range
provides the lowest photochemical impact. Shortpass filtering is particularly relevant, as the high
scleral transmission at long wavelengths causes a disproportionate contribution from longer
wavelengths of the LED spectrum.

Fig. 16 Full-field images from subjects with pigmentation levels 3 and 5. Both images were taken
with a 600-nm shortpass filter. Some reflection artefacts are observed in the images.
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A possible further step is to build a transscleral camera with more powerful illumination and
test it on a larger number of subjects with high skin pigmentation, to verify that our suggested
improvements provide sufficient image quality.
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