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ABSTRACT. Significance: Three-dimensional quantitative phase imaging (QPI) has rapidly
emerged as a complementary tool to fluorescence imaging, as it provides an objec-
tive measure of cell morphology and dynamics, free of variability due to contrast
agents. It has opened up new directions of investigation by providing systematic
and correlative analysis of various cellular parameters without limitations of photo-
bleaching and phototoxicity. While current QPI systems allow the rapid acquisition of
tomographic images, the pipeline to analyze these raw three-dimensional (3D)
tomograms is not well-developed. We focus on a critical, yet often underappreciated,
step of the analysis pipeline that of 3D cell segmentation from the acquired
tomograms.

Aim: We report the CellSNAP (Cell Segmentation via Novel Algorithm for Phase
Imaging) algorithm for the 3D segmentation of QPI images.

Approach: The cell segmentation algorithm mimics the gemstone extraction
process, initiating with a coarse 3D extrusion from a two-dimensional (2D) seg-
mented mask to outline the cell structure. A 2D image is generated, and a segmen-
tation algorithm identifies the boundary in the x -y plane. Leveraging cell continuity in
consecutive z-stacks, a refined 3D segmentation, akin to fine chiseling in gemstone
carving, completes the process.

Results: The CellSNAP algorithm outstrips the current gold standard in terms of
speed, robustness, and implementation, achieving cell segmentation under 2 s per
cell on a single-core processor. The implementation of CellSNAP can easily be par-
allelized on a multi-core system for further speed improvements. For the cases
where segmentation is possible with the existing standard method, our algorithm
displays an average difference of 5% for dry mass and 8% for volume measure-
ments. We also show that CellSNAP can handle challenging image datasets where
cells are clumped and marred by interferogram drifts, which pose major difficulties
for all QPI-focused AI-based segmentation tools.

Conclusion: Our proposed method is less memory intensive and significantly faster
than existing methods. The method can be easily implemented on a student laptop.
Since the approach is rule-based, there is no need to collect a lot of imaging data and
manually annotate them to perform machine learning based training of the model.
We envision our work will lead to broader adoption of QPI imaging for high-
throughput analysis, which has, in part, been stymied by a lack of suitable image
segmentation tools.
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1 Introduction
Regulation and coordination of cell shapes are central to native physiology during all stages of
organismal existence. Recent advances in optical imaging have provided mechanistic insights
into such phenomena by revealing cellular features and processes with previously unimagined
detail.1,2,3 Central to the accurate analysis of such intricate biological processes is the precise
segmentation of cellular images. Quantifying cellular morphology, such as shape, area, circu-
larity, aspect ratio, and others, starts with first segmenting the cells in a given field of view. Due to
its unquestionable significance, much work has been done to standardize the process. There are
well-developed open-source software suites, notably CellProfiler4 and CellPose,5 to perform
such segmentation tasks with great accuracy. The recent update to CellProfiler includes the func-
tionality of three-dimensional (3D) image segmentation and is currently the most widely used
tool to perform such tasks. However, since the current workhorse for biological imaging is fluo-
rescence microscopy, all standard segmentation software are optimized for and targeted to the
analysis of fluorescence images.

Yet, contrast-agent-free microscopy is highly desirable to study the dynamics and physio-
logical activity of various structures in living cells. Quantitative phase imaging (QPI) measures
optical field images using laser-based interferometry and has rapidly emerged as a viable imaging
alternative because it offers an objective measure of morphology and dynamics in a label-free
manner.1 In addition to the amplitude images provided by conventional intensity-based micros-
copy techniques, QPI measures optical phase delay maps governed by the refractive index (RI)
distribution of a sample. Since the endogenous RI distribution is strongly related to the structural
and biochemical characteristics of the cell type, the acquired field images can be analyzed for
systematic discovery of cell type-specific morphological and biophysical fingerprints encoded in
the images.

Over the past two decades, QPI has provided important insights into diverse biological phe-
nomena, ranging from membrane dynamics of red blood cells6 to neuronal activity7 and cell-
nanoparticle interactions,8,9 and cell-drug interactions.10 Recently, it has also been shown that
QPI images can be mapped to fluorescence images using deep learning techniques, a concept
coined as image-to-image translation. Prediction of stains (i.e., where specific fluorophores/
stains would bind in an unlabeled specimen) using a combination of QPI and machine learning
has been successfully demonstrated,11–13 and gradually, more stains are being added to the
library. Indeed, phase imaging with computational specificity has allowed precise measurements
of the growth of nuclei and cytoplasm independently, over many days, without loss of viability.

Central to many of the aforementioned and other emergent applications is QPI’s intrinsic
ability to measure single-cell volume and mass non-destructively and ultra-sensitively over arbi-
trary periods of time in both adherent and flowing cell populations.1 A critical step in undertaking
such analysis is the accurate segmentation of the tomographic images of the cell populations.
Since QPI imaging is still a relatively new technique in the field of cell biology, the analysis
pipeline is not as developed as it is for fluorescence images. The toolbox developed for fluo-
rescence image segmentation does not work well with QPI images, as the fluorescence contrasts
are much sharper than the RI contrast. Also, in some segmentation procedures, the stained
nucleus is used as a fiducial marker to define the respective cytoplasm boundary, and conse-
quently, such algorithms cannot be directly implemented in QPI imaging. This has motivated
researchers to develop segmentation algorithms tailored for QPI images,14 yet their applicability
has been limited to two-dimensional images thus far.

The state-of-the-art method used for 3D QPI cell segmentation is an Otsu-based 3D water-
shed algorithm15 (hereafter referred to as the Otsu threshold algorithm in this work). This
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algorithm works very well for isolated cell images; however, it is challenging to draw boundaries
when the cells are clumped. This process is also memory intensive since the processing requires
computation on a 3D stack of images. As a point of reference, using the current state-of-the-art
software module, this cell segmentation takes ca. 10 seconds for a 3D stack of images
(484 × 484 × 208) on a workstation equipped with an 8th generation i7 processor running at
3.7 GHz, 64 GB RAM, and Nvidia GeForce GTX 1080 - 8 GB graphics card. Another recently
developed method for 3D QPI cell segmentation is an AI-based cell segmentation tool.16 While
this should, in principle, be able to overcome the limitations of the Otsu threshold algorithm, such
implementation would require an extensive training dataset with enough complexity to handle all
the edge cases. The preparation of such training datasets would also require manual annotations,
besides needing separate datasets for different cell types. While an AI-trained system can be
implemented on a modest system with a GPU, the training for an AI-based segmentation tool
would necessitate a state-of-the-art computational resource.

To overcome these drawbacks, we report here a fast and light-weight algorithm for 3D QPI
image-based cell segmentation. Our cell segmentation algorithm is inspired by the process of
gemstone extraction, where a stonemason starts by making a coarse extrusion cut along a given
axis and then gradually carves away near the surface of the gemstone to reveal the final form
[Fig. 1(a)]. The algorithm first extrudes a 3D image from a two-dimensional (2D) segmented
mask, which can be seen as creating a rough shape of the cell structure. A 2D image is generated
through maximum intensity projection (MIP) of the 3D image, and a 2D cell segmentation algo-
rithm is used to make a 2D mask. This allows us to identify the boundary region for segmentation
in the x-y plane. Next, we take advantage of the continuity of cells and the absence of abrupt
changes in consecutive z-stacks of the 3D image to perform the complete 3D segmentation. This
step can be likened to the chiseling process in gemstone extraction, where the stone mason uses
finer tools to carve away at the surface. The implication for developing such a method is vast as it
can speed up high-throughput single-cell analysis and reduce the computational burden on the
hardware. This also lowers the barrier to the adoption of QPI in biological sciences. The growing
advancements in hardware development for high-throughput imaging in QPI17,18 also offer sig-
nificant utility to this method.

2 Materials and Methods

2.1 Cell Culture Method
U937 cells were seeded in TomoDishes at about 5 � 104 cells per dish with complete media and
PMA (Sigma-Aldrich 79346, 1 μM). The complete media consisted of RPMI-1640 (Gibco,
11875-093), 10% heat-inactivated FBS (Corning, 35-010-CV), 1% P/S, 1%L-Glu (Gibco,
200 mM, 25030081), and 1% HEPES (Gibco, 1M, 15630-080). The seeding day is counted
as day 0.

For M1 polarized cells, on day 3, PMA media is removed, and cells are washed with PBS.
Thereafter, polarizing media consisting of complete media with LPS (List Biological
Laboratories, 421, 100 ng∕mL) and IFN-y (Sigma-Aldrich, SRP3093, 50 ng∕mL) were added
to the dish. The cells were incubated for another 2 days. On day 5, the media was removed, and
cells were washed with PBS before fixing.

For M2 polarized cells, on day 3, PMA media is removed, and cells are washed with PBS.
Thereafter, polarizing media consisting of complete media with IL-4 (Sigma-Aldrich, SRP3093,
50 ng∕mL) and IL-13 (R&D Systems, 213-ILB-005, 50 ng∕mL) were added to the dish. The
cells were incubated for another 2 days. On day 5, the media was removed, and cells were washed
with PBS before fixing.

The cells were fixed with 4% PFA at room temperature for 15 min. It was then washed with
PBS two times. PBS was once again added to fully submerge the fixed cells before imaging.

2.2 Imaging Method
The measurements were performed on a QPI system (HT-1H, Tomocube Inc., Republic of Korea)
comprised of 60× water immersion objective (1.2 NA), an off-axis Mach–Zender interferometer
with a 532 nm laser, and a digital micromirror device for tomographic scanning of each cell.19

The 3D RI distribution of the cells was reconstructed from the interferograms using the Fourier
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diffraction theorem as described previously.20 TomoStudio (Tomocube Inc., Republic of Korea)
was used to reconstruct and visualize 3D RI maps and their 2D MIP.

2.3 Design Principle and Workflow
Step 1: The first stage involves gathering and exporting all unprocessed 3D image stacks from

the imaging software. Our code is tailored to operate with a tiff stack file, which contains
matrix values represented by RI, saved in uint16 format. Nevertheless, the algorithm is com-
patible with any file format provided that we are utilizing a scalar multiplication of the RI
value as the matrix value.

Step 2: We produce an MIP image of the 3D tiff image stack along the z-axis. MIP is a technique
used to visualize 3D data along a visualization axis, where only the voxels with maximum
intensity are projected onto the image. Originally developed for use in Nuclear Medicine
by Jerold Wallis, it has since been applied to various tomographic imaging modalities, such
as CT scans and X-ray imaging.21 Most 3D imaging software offers the option to export 2D
MIP images. A standard library can also be utilized for this image-processing step.

Step 3: In this step, we take advantage of already well-built 2D image analysis libraries, which
works wonderfully on 2D images for cell segmentation. Specifically, we use CellProfiler1 to
perform 2D cell segmentation on MIP images. The image mask files were saved in a separate
folder. While CellProfiler was our tool of choice because of its ease of usage and flexibility,
any 2D segmentation tool can be used as long as they have the ability to generate mask
images.

Step 4: The 2D mask generated from CellProfiler is then extruded to 3D, where the number of
image stacks for the mask is equal to the number of the z-stack planes in the original
RI image.

Step 5: The process begins by selecting the mask for each cell within the field of view indi-
vidually and setting the matrix value for that mask to 1, and the background and the mask of
all other cells are set to 0. The resulting matrix is then multiplied by the original RI image.
This process is repeated iteratively for all cells in the given field of view. In addition, all
pixels with RI values equal to or lower than the background RI value are set to zero. The
resulting matrix, referred to as the rough_segmentation_matrix, shows a rough outline of the
cell with noisy pixels around it, as shown in Fig. 1.

Step 6: In this step, we use the continuity feature of the 3D cell image and implement 2D and 3D
connectivity matrices to eliminate noisy pixels around the cell. First, we take the rough_-
segmentation_matrix and plot the number of non-zero pixels (normalized) against the num-
ber of z slices. We set a hard threshold at the z-slice where the normalized non-zero-pixel
value is 0.5. Instead of hard-coding the z-stack number to identify the bottom of the cell, we
used a threshold condition because our microscope system has an axial resolution of 300 nm,
which is lower than the surface roughness of commonly used petri dishes. Next, for each 2D
plane, we label the connected components using the 2D connectivity matrix algorithm,
which is achieved using the bwlabel function in MATLAB. We only retain the label cor-
responding to t highest number of pixels in each 2D slice plane to remove extra noise from
cell debris [Fig. 2(a)]. After 2D noise removal, we use the bwlabeln function on the 3D
image to eliminate all the noise in the 3D structure, removing all disconnected structures
in the process, resulting in perfectly segmented cells [Fig. 2(b)].

Step 7: The dry mass is calculated using the following equation:

EQ-TARGET;temp:intralink-;sec2.3;114;203

drymass ¼ 1

α

ZZ
s
OPDðx; yÞdx dy; where

OPDðx; yÞ ¼
Z

h

0

½nðx; yÞ − nmedium�dz and; α ¼ 0.19 μm3 pg−1

Volume is calculated by counting the number of non-zero pixels in the 3D segmenta-
tion mask.
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3 Results and Discussion
We tested our QPI cell segmentation algorithm against the current gold standard of the Otsu-
based 3D watershed algorithm provided by the manufacturer with their microscopy software
suite. We also used the recent AI-powered segmentation tool22 for cases where the watershed

Fig. 2 (a) The segmentation process involves utilizing a 2D connectivity matrix to label segments
in each 2D slice, followed by the selection of the segment with the highest pixel count. Small seg-
ments, depicted in different colors within each slice, are subsequently discarded. (b) Analogously,
the 3D segmentation process involves labeling distinct segments using a 3D connectivity matrix
and selecting the segment with the highest voxel count.

Fig. 1 Our method draws inspiration from gemstone extraction from stone, where a stone block
resembles a 3D raw image matrix. Coarse segmentation along the z-plane corresponds to step 4
in (b), whereas fine segmentation aligns with steps 5 and 6 in (b). (b) Step by step workflow for cell
segmentation using QPI images.
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algorithm did not provide satisfactory segmentation. The AI-powered segmentation tool is cur-
rently available for a limited number of cell types, including macrophages. Our comparative study,
therefore, is with U937-derived macrophages M1 and M2 cells. Since label-free volume and dry
mass measurements are unique to QPI images, these two metrics act as suitable benchmarking
metrics to compare the performance of our algorithm. Cell experiments were conducted in sparsely
populated cell populations in a petri dish, with a confluency of∼65% [Fig. 5(a)]. This enabled us to
obtain high-quality images featuring a single cell within a given field of view. As a result, we could
compare our algorithm to the current gold standard with minimal concern for its accuracy, as the
latter is plagued by robustness issues in the presence of multiple cells within a given field of view.
We observed a dry mass difference of∼5% for bothM1 andM2 cells [Figs. 5(b) and 5(c)], whereas
the difference in volume was slightly higher, with a mean value of 8% for M1 and 6% for M2 cells
[Figs. 5(d) and 5(e)]. Since the methods used to perform cell segmentation differed significantly, it
is encouraging to note that the mean differences in dry mass and volume were both <8% [Figs. 5(f)
and 5(g)]. In addition, we have included a table (Table 1) that compares the computation time
required by each of these algorithms, demonstrating that our algorithm significantly outperforms
the current gold standard even on a platform with modest computational hardware.

To put our study in the context of cell segmentation literature, we performed a comparison of
our method against the absolute gold standard of manual segmentation. Each 3D cell image in
our analysis consisted of a high-resolution stack comprising 208 slices. To establish a ground
truth dataset, we manually created annotated masks for 10 cells from M1 (∼2080 images) and 10
cells from M2 (∼2080 images). Subsequently, we conducted a segmentation accuracy compari-
son using our CellSNAP algorithm. To ensure thoroughness, we also assessed performance
against Cellpose, a currently popular human-in-the-loop-based deep learning tool for cell seg-
mentation. The segmentation accuracy was determined by calculating the ratio of correctly clas-
sified pixels to the total number of pixels inside the manually segmented cells. We notice that
CellSNAP has a consistent accuracy of above 90% for most of the cells. One likely explanation
for the high accuracy observed is that human annotators base their decision to include a particular
area as part of the cell on its continuous presence. In cases where certain regions appear frag-
mented, they are typically classified as cell debris. In the CellSNAP algorithm, we employ a
connectivity matrix to facilitate precise segmentation by capturing the connectivity patterns
within the cell. The performance of the Cellpose algorithm varies, succeeding in certain cases
while exhibiting significant failures in others. This discrepancy arises from the fact that the net-
work has not been specifically trained on our dataset, and we are utilizing the default weights.
Although retraining the Cellpose network tailored to our requirements is certain to enhance its
performance, this approach proves time-consuming, as each cell image necessitates manual
annotation of 208 image slices. In the Supplementary Material, we have provided a comparison
based on other metrics, such as intersection over union (Fig. S1 in the Supplementary Material),
Dice coefficient (Fig. S2 in the Supplementary Material), and max Hausdorff distance (Fig. S3 in
the Supplementary Material) for the cells shown in Fig. 3.

Fig. 3 Segmentation accuracy comparison against the manual annotated and segmented data:
(a) M1 cells and (b) M2 cells for Cellpose and CellSNAP algorithm.
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We embarked on developing a cell segmentation algorithm due to the limitations of the current
method in segmenting cells when they are clumped together within a field of view. Moreover, the
current method’s performance is hampered in suboptimal imaging conditions. Given that QPI im-
aging is widely used for longitudinal studies, temperature drifts, stage drifts, and calibration drifts
are inevitable, rendering the current segmentation algorithms unsuitable for such scenarios, with
resulting imaging data being either unusable or requiring extensive manual processing. In this
regard, we present two instances where our algorithm’s robustness is evident. In cases where multi-
ple cells are clumped together and share boundaries, the existing Otsu thresholding fails to dis-
tinguish between the cells, resulting in a single unit being segmented [Fig. 4(a)]. Although the AI
segmentation tool offers some promise, as evidenced by the accurate segmentation of one cell in
Fig. 4(a), it fails to accurately segment the remaining cells. By contrast, our segmentation algorithm
accurately segments the cells and outperforms existing methods in terms of computational speed.
The segmentation accuracy for each image slice can be viewed in Video 1.

In another example, the image captured has interferogram patterns on the image. This typically
arises from calibration drift when performing time-lapse over extended periods. Removing this
error with just an Otsu threshold proves challenging, given the similarity between pixel values
in the interferogram shadows and the cell. A pattern recognition conditional statement may be
used to remove this error along with the Otsu threshold, but we are not aware of any implemen-
tation of such an algorithm. While AI segmentation tools can be trained with datasets featuring
interferogram artifacts, such implementations are computationally intensive and demanding.
Moreover, such errors are prevalent for tools based on trained models when presented with unique
cases.23 Introducing enough variations in the training dataset and retraining the algorithm can over-
come this, but this process has limitations, as the machine learning algorithm seldom provides
details on the methods.24 Debugging is also difficult if the trained model influences other cases.
Nevertheless, CellSNAP offers a possibility of segmenting such cell images as well [Fig. 4(b)].

While promising, CellSNAP’s straightforward approach also brings about certain limita-
tions. One notable limitation is its inability to segment multiple cells along the z-axis, as the
algorithm assumes the presence of only one cell in the z-stack. This restriction renders the algo-
rithm unsuitable for scenarios where multiple cells are clustered along the z-axis, a situation
commonly found in spheroids and organoids. To the best of our knowledge, the only way to

Fig. 4 The efficacy of our algorithm in handling challenging scenarios encountered during QPI
imaging. (a) Multiple cells in proximity pose a segmentation challenge for conventional methods,
such as Otsu threshold and AI-based segmentation. However, our algorithm can accurately seg-
ment individual cells even in such a clumped condition. (b) In suboptimal imaging conditions, inter-
ferogram noise impedes accurate segmentation by traditional techniques. In contrast, our
algorithm is resilient to such noise and can accurately segment cells (Video 1, MP4, 17.6 MB
[URL: https://doi.org/10.1117/1.JBO.29.S2.S22706.s1]).
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Fig. 5 (a) Cell experiments with sparsely populated cells in the petridish and a sample cell
image obtained using the QPI microscope. (b) Comparison of dry mass values for M1 cells.
(c) Comparison of dry mass values for M2 cells. (d) Comparison of volume for M1 cells.
(e) Comparison of volume for M2 cells. For a statistical comparison between the two algorithms,
the difference in the percentage of dry mass and volume was calculated for (f) M1 and (g) M2 cells
with the current gold standard and our proposed algorithm.
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perform 3D segmentation in spheroids or organoids with quantitative phase images is available
via deep learning25 where training dataset comprised of paired QPI and fluorescence images. The
QPI images were then translated to fluorescence images through a U-Net architecture, which is
then used to segment cells, skipping the need for manual segmentation of QPI images. Another
limitation arises in cases of high clustering density, where the algorithm struggles to segment
cells due to its assumption of a single cell along the extruded MIP volume. In instances of high-
density clustering with interleaved cell structures along the z-stack, the segmentation becomes
challenging. The third scenario where the algorithm faces challenges is when the continuity of
dry components of cells is disrupted. Certain cell types, during differentiation or specific func-
tional states, may experience water uptake, resulting in a significant increase in volume. In QPI
images, the dark appearance of the water background leads to a discontinuous distribution of dry
components, causing CellSNAP to fail in appropriately segmenting cells in such cases.

4 Conclusion
QPI is a powerful imaging tool that is making major strides and has found numerous applications
in basic biological studies and applied clinical research. As QPI utilizes the optical path length as
intrinsic contrast, the imaging is noninvasive and, thereby, allows for monitoring live cell samples
over several days without concerns of degraded viability. Therefore, significant recent attention
has been focused on developing robust analysis pipelines for quantitative phase images, includ-
ing the application of convolutional neural networks for computationally substituting chemical
stains for cells, extracting biomarkers of interest, and enhancing imaging quality. Yet, 3D seg-
mentation of cells, particularly clumped cells, presents a major challenge, as the existing methods
work well only for isolated cells. In this work, we have shown that our cell segmentation algo-
rithm for QPI images outperforms the existing gold standard both in terms of speed and robust-
ness. Our algorithm takes about 2 s per cell on a single-core processor to perform the
segmentation. This can easily be parallelized on a multi-core system for further improvement
in speed. For the cases where segmentation is possible with the existing standard method, our
algorithm has a mean error of 5% for dry mass and 8% for volume measurements. Further mor-
phological analysis, such as the determination of surface area, aspect ratio, circularity, and others,
can be done by standard function files on the segmented 3D mask images generated by our
algorithm. Therefore, this work can lead to wider adoption of QPI imaging for high-throughput
analysis, which was earlier stymied by a lack of suitable cell segmentation tools, and lower the
barrier to the adoption of QPI imaging modality in biological sciences.
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Table 1 Speed comparison for different methods.

Method name Computation time Total time System configuration

Watershed
algorithm

File loading: 3 s 10 s i7 - 8700K CPU@3.7 GHz, 64 GB
RAM, Nvidia GeForce GTX 1080 -

8 GB graphics card
Processing time: 7 s

AI-enabled
segmentation

Running time after
training: 6 s

6 s i7 - 8700K CPU@3.7 GHz, 64 GB
RAM, Nvidia GeForce GTX 1080 -

8 GB graphics card

Cellpose — 350 s i5 -7200 @ 2.7 GHz, 16 GB RAM

CellSNAP 2D segmentation: 1 s 2 s per cell utilizing a
single-core processor.
It can be sped up by
parallel processors

i5 -7200 @ 2.7 GHz, 16 GB RAM
Remaining process: 1 s
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Code and Data Availability
The code for analysis with a sample dataset can be found on the following link: https://github.com/
Lconway4C/QPI-cell-segmentation.git.

An additional dataset containing RI Tomogram TIFF files can be found on the following link: https://
doi.org/10.6084/m9.figshare.23547087.
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