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ABSTRACT. Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging
technique that provides unique information about white matter microstructure in the
brain but is susceptible to confounding effects introduced by scanner or acquisition
differences. ComBat is a leading approach for addressing these site biases.
However, despite its frequent use for harmonization, ComBat’s robustness toward
site dissimilarities and overall cohort size have not yet been evaluated in terms of
DTI.

Approach: As a baseline, we match N ¼ 358 participants from two sites to create a
“silver standard” that simulates a cohort for multi-site harmonization. Across sites,
we harmonize mean fractional anisotropy and mean diffusivity, calculated using par-
ticipant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas.
We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size
imbalance between sites, and 6 levels of mean age difference between sites to
quantify (i) βAGE, the linear regression coefficient of the relationship between FA and
age; (ii) γ̂�sf , the ComBat-estimated site-shift; and (iii) δ̂�sf , the ComBat-estimated site-
scaling. We characterize the reliability of ComBat by evaluating the root mean
squared error in these three metrics and examine if there is a correlation between
the reliability of ComBat and a violation of assumptions.

Results: ComBat remains well behaved for βAGE when N > 162 and when the mean
age difference is less than 4 years. The assumptions of the ComBat model regarding
the normality of residual distributions are not violated as the model becomes
unstable.

Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort
should be examined for size and covariate distributions of each site. Direct
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assessment of residual distributions is less informative on stability than bootstrap
analysis. We caution use ComBat of in situations that do not conform to the above
thresholds.
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1 Introduction
Diffusion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging modality that
provides insight into the white matter (WM) microstructure in the brain.1 In diffusion tensor
imaging (DTI), the signal from a dMRI scan is modeled as tensors that describe the direction
and degree of water diffusion at each voxel.2 One of the most common ways to study a DTI
model is through scalar metrics. Two of the most common diffusion scalars are fractional
anisotropy (FA), which describes the directedness of diffusion, and mean diffusivity (MD),
which describes the average magnitude of diffusion. While DTI is limited in its ability to describe
crossing axon fibers in the brain,2 it is still useful to study the changes in brain morphology due to
disease or aging.3–5

Multi-site studies are desirable because they can increase sample size and incorporate pop-
ulation heterogeneity. However, multi-site studies can suffer from bias that is introduced by
differences in data acquisition methods, study design, or other confounders that can affect the
data.6 For MRI, factors, such as the brand of the scanner, the magnet strength, head coils used,
acquisition protocols, and other imaging differences introduce site bias and uncertainty in the
images.7 Diffusion imaging is especially sensitive to different acquisition parameters.8–10 Matsui
et al. showed that even after preprocessing to correct for scanning distortions and artifacts
common to diffusion imaging, the inter-site variability is still significant.9

To perform multi-site studies, site bias must be removed in a process called harmonization.
For image level harmonization, where site bias is removed at the voxel level, a common tech-
nique is harmonization of the rotationally invariant spherical harmonic (RISH) features derived
from images.11 Several deep learning algorithms have also been proposed for harmonization.12,13

One of the most common methods for DTI harmonization is ComBat, a statistical approach,
where site bias is removed from features extracted from the images. Originally designed to
remove batch effects in the field of genomics,14 ComBat has been adapted for image-level har-
monization of DTI data to remove site biases.15 Other studies have used ComBat for harmoni-
zation of diffusion scalar metrics,16 and several different extensions of ComBat have been
proposed as well that are covered in a recent review.17

There have been multiple previous studies assessing the reliability of ComBat for harmo-
nizing multi-site medical imaging data. Zindler et al. assessed ComBat’s inflation of false pos-
itive results in the context of different sample sizes and number of features harmonized for
genomic data.18 Bell et al. evaluated ComBat for harmonization of magnetic resonance spectros-
copy (MRS) data.19 Cabini et al. examined ComBat harmonization of radiomic features extracted
from CT images of lung cancer patients.20 Richter et al. validated ComBat and variations on a
travelling cohort in terms of ability to remove site bias without removing true biological effect
from structural and diffusion MRI.21 Orlhac et al. examined deeper than only harmonization
potential and assessed different situations and use cases for ComBat in the context of harmo-
nizing image-derived biomarkers from PET scans.22 Parekh et al. posited sample size require-
ments under different Mahalanobis distances between datasets for structural MRI features, with
larger distances corresponding to greater site biases.23 A recent review of image harmonization
listed the use cases of ComBat.24 Yet, these studies did not investigate the boundaries for which
ComBat harmonization can still reliably estimate site bias in the context of dMRI. We seek to
establish statistically based suggestive guidelines for situations in which ComBat can be used to
harmonize data extracted from DTI.
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2 Methods
We create a “silver standard” cohort from two datasets with DTI and match participants accord-
ing to demographic covariates. We bootstrap subsets from this cohort and run ComBat harmo-
nization on the subsets, with each bootstrap defined by the cohort parameters of total sample size,
imbalance of sample sizes between sites, and mean age difference between sites. We regress on
the harmonized data to find trends of FA versus age. Additionally, we obtain the final shift and
scale parameters estimated by ComBat from the data. We compare the estimates of regression
coefficients and ComBat parameters obtained from the silver standard cohort to those obtained
from the bootstrapped subsets to assess reliability of ComBat.

2.1 Data Acquisition
We consider two datasets containing both DTI and T1-weighted images: the Baltimore
Longitudinal Study of Aging (BLSA)25,26 and the Vanderbilt Memory and Aging Project
(VMAP).27 VMAP data were collected by Vanderbilt Memory and Alzheimer’s Center
Investigators at Vanderbilt University Medical Center. BLSA DTI scans were acquired on a
3T Phillips scanner in 32 directions at a b-value of 700 s∕mm2 with voxel dimensions of 2.2 ×
2.2 × 2.2 mm3 that were resampled to 0.8125 × 0.8125 × 2.2 mm3. All VMAP DTI scans con-
sidered were acquired on a 3T Phillips scanner with an 8ch SENSE head coil in 32 directions at a
b-value of 1000 s∕mm2 with voxel dimensions of 2 × 2 × 2 mm3. For both sites, T1 scans were
acquired in the same scanning session as the DTI images. BLSA T1 scans were acquired with
voxel dimensions of 1.2 × 1 × 1 mm3 and VMAP T1 scans were acquired with voxel dimensions
of 1 × 1 × 1 mm3.

2.2 Silver Standard Cohort
We consider both cognitively unimpaired and mild cognitive impairment (MCI) participants
across VMAP and BLSA, matched by cognitive status, sex, and age within 4 years while keeping
track of APOE2 positivity, APOE4 positivity, race/ethnicity, and years of education. The final
size of our silver standard cohort is N ¼ 358, with each site contributing an equal number of
participants (Table 1).

2.3 Data Processing and Pre-processing
All DTI scans are preprocessed using v 1.0.8 of the PreQual preprocessing pipeline28 for denois-
ing and to remove susceptibility-induced and eddy current distortions (Fig. 1). Fractional
anisotropy (FA) and MD are calculated from the preprocessed data. The EVE Type-I, EVE
Type-II, and EVE Type-III JHU atlases29,30 are registered to the diffusion space of each partici-
pant using ANTs SyN registration31 and FSL’s epi_reg.32 The T1 brain mask used for epi_reg is
calculated via SLANT.33 The epi_reg transform is converted to the same format used by ANTs
via the Convert3D34 tool developed by the ITK-SNAP team. The two transformations are then
applied in a single registration step. After registration of the atlases to the diffusion space, mean

Table 1 Demographic information for each dataset in the silver standard cohort.

Measure BLSA (n ¼ 159) VMAP (n ¼ 159)

Mean age (yrs) 73.9 74.0

Age range (min, max) (59.8, 91.9) (60.0, 92.0)

Sex (% male) 59 59

Percentage cognitively healthy 94 94

Race (% non-Hispanic white) 84 94

APOE2 (% positive) 18 16

APOE4 (% positive) 28 29

Average education (yrs) 17.0 16.3
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FA, MD, AD, and RD are calculated for each region of the three atlases using the MRtrix3
software.35 We use the regions of interest (ROIs) from the EVE Type-III atlas, as they are all
WM regions. The code used for the process is available at: (https://github.com/MASILab/
AtlasToDiffusionReg).

2.4 ComBat Harmonization
The ComBat model proposed by Johnson et al.14 assumes that Yisf , the original input scalars for
feature f extracted from participant scan i that comes from site s are defined as

EQ-TARGET;temp:intralink-;e001;114;313Yisf ¼ αf þ Xβf þ γsf þ δsfεisf; (1)

where αf is the overall value for feature f; βf is the vector of regression coefficients that cor-
respond to covariates in the covariate matrix, X; γsf is the additive site bias shift for feature f at
site s; δsf is the multiplicative site bias for feature f at site s; and εisf is an error term that is
assumed to be normally distributed with mean 0 and variance σ2f. ComBat requires three types of
inputs: (i) the scalar values of the features that require harmonization; (ii) covariates, such as age
or sex, that preserve the variability of the input data; and (iii) a site covariate that indicates vari-
ability to be removed. First, ComBat standardizes the distributions of the features to have similar
means and variances

EQ-TARGET;temp:intralink-;e002;114;188Zisf ¼ Yisf − α̂f − Xβ̂f
σ̂f

; (2)

where Zisf is the standardized data, Yisf is the unharmonized data, α̂f is the estimator of feature f,

β̂f is the vector estimator of regression coefficients corresponding to X for feature f, and σ̂f is the
estimated standard deviation of feature f calculated as

EQ-TARGET;temp:intralink-;e003;114;107σ̂2f ¼
1

N

X
is

ðYisf − α̂f − Xβ̂f − γ̂sfÞ2; (3)

Fig. 1 After registration of the JHU EVE-III Atlas, mean FA values were calculated in all the regions
for each participant in the silver standard cohort. A point in the experimental space is “feasible” if
the sample size for either site is at least N ¼ 6, the imbalance level does not result in N for either
site exceeding the available number of participants for that site, and if sampling of participants
yielded a covariate shift within 1 year of the target age difference between sites. For each feasible
point in the experimental space, 10 bootstraps were subsampled from the silver standard cohort,
and the FA values for the subsamples were harmonized by ComBat. The resulting parameters
were then compared to those from the silver standard to determine reliability of ComBat at that
location in the experimental space.
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where N is the total number of samples. It is necessary to constrain

EQ-TARGET;temp:intralink-;e004;117;724

X
s

nsγ̂sf ¼ 0; (4)

for identifiability, where ns is the number of samples coming from site s and N ¼ P
sns. In other

words, without the constraint in Eq. (4), the assumed model in Eq. (1) would have an infinite
number of solutions. ComBat also assumes that the standardized data are normally distributed
according to Zisf ∼ ðγsf; δ2sfÞ. Then, for each site and feature combination, ComBat uses an

empirical Bayes method to iteratively update the estimates of the shift, γ̂sf , and scale, δ̂sf , param-
eters via an expectation maximization (EM) algorithm. Upon convergence, the final parameter

estimates, γ̂�sf and δ̂�sf, are used to create the batch-adjusted values Yisf using the equation:

EQ-TARGET;temp:intralink-;e005;117;597Ŷisf ¼ σ̂f

�
Yisf − α̂f − Xβ̂f − γ̂�sf

δ̂�sf

�
þ α̂f þ Xβ̂f: (5)

We use (i) the mean FA values for 112 of the 118 regions of the EVE Type-III atlas for each
participant; (ii) covariates of age, sex, cognitive status, race, education, APOE2 carrier status, and
APOE4 carrier status, the covariates used in DTI harmonization by Yang et al.;36 and (iii) a
covariate indicating the dataset the participant scan came from. Six regions are excluded from
consideration because the registration process resulted in regions with zero volume, which could
induce a large shift in the mean of the distribution of mean FA values for the cohort. Such shifts
could have substantial impact on the ComBat harmonization procedure. The education covariate
is a continuous variable indicating years of education, and the APOE2 and APOE4 covariates are
categorical variables indicating the presence or absence of the respective APOE allele. The cog-
nitive status covariate indicates whether the participant is cognitively unimpaired or is diagnosed
with MCI. The version of ComBat used for this analysis is implemented by Fortin et al. (https://
github.com/Jfortin1/neuroCombat).15

2.5 Experimental Search Space
Bayer et al. highlighted a variety of factors that might influence the performance of ComBat.17 To
examine the robustness of ComBat, we use 740 different permutations of 19 levels of total sam-
ple size, 10 levels of sample size imbalance, and 6 levels of covariate shift (Fig. 1). Total sample
size is the number of participants whose features are input to ComBat for harmonization. In the
context of this analysis, we define sample size imbalance to be the ratio X∶10 of participants
from one site relative to the other site, where 10:10 is perfect balance of sample size between
sites. We consider levels from X ¼ 1 to X ¼ 10. To compare different experimental permuta-
tions, we keep VMAP as the single site whose sample size changes with respect to BLSA. For the
covariate shift, the value is the difference in the mean age of the participants from a single dataset
compared to the other one. Fortin et al. demonstrated ComBat harmonization of datasets with
different age ranges, but we evaluate performance at multiple levels to provide a more controlled
and comprehensive analysis of changes in performance.37 For all levels of difference, we con-
sider scenarios both when the mean age for VMAP is greater than BLSA and when the mean age
of VMAP is less.

2.6 Bootstrapping Experimental Space
We bootstrap 10 simulations at each of these experimental permutations through sampling from
the silver standard cohort without replacement. For each iteration, ComBat harmonization is
performed as described in Sec. 2.4 to obtain the harmonized data and estimated parameters

γ̂�sf and δ̂
�
sf for each region and site combination. The mean FAvs Age regressions are calculated

according to Sec. 2.7. Bootstrapping subsamples of the silver standard can be done either with or
without replacement. As sampling with replacement can introduce artifacts in the data, such as
repeated participants, we choose to sample without replacement. As a consequence, not all per-
mutations in the experimental space defined in Sec. 2.5 are feasible. In addition, the subsamples
at some permutations will be more highly correlated than others due to lack of participant
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variability for a site that fit the experimental criteria. We also do not include any permutations that
result in any site having fewer than six participants.

2.7 Mean FA Versus Age Regression
To estimate the associations of FA with age from the harmonized data, we perform a linear
regression

EQ-TARGET;temp:intralink-;e006;114;664ŶROI ∼ 1þ XAGEβAGE þ XSEXβSEX þ XSITEβSITE þ XMCIβMCI þ ε; (6)

where ŶROI is the ComBat harmonized mean FA for an ROI in the EVE Type-III atlas. Covariates
of race, education, APOE2 status, and APOE4 status are not used for the linear regression, as
they do not significantly impact FAvalues in the harmonized cohort data. As FA has been shown
to be negatively correlated with age,3 we use βAGE to examine the changes among the exper-
imental permutations. According to the central limit theorem (CLT), as N goes to infinity, the
distribution of the means will tend to N ∼ ðμ; σ2NÞ.38 Thus, we expect the standard deviation of

these means to be inversely proportional to
ffiffiffiffi
N

p
as N approaches infinity. Applying the CLT to

our bootstrap analysis, we expect the mean squared error of βAGE to tend to be ðXT
AGEXAGEÞ−1σ2,

so its root mean squared error would be inversely proportional to
ffiffiffiffi
N

p
.

2.8 Comparison to Silver Standard
To evaluate the robustness of ComBat at each experimental permutation, we compare to the silver
standard cohort using three different error metrics: (i) the average root mean square error in
normalized effect size for βAGE across all regions, (ii) the average root mean squared error

of γ̂�sf across all regions, and (iii) the average root mean squared error of the log of δ̂�sf across
all regions. The standard error for each regression estimate is also obtained from the linear regres-
sion estimation. We normalize βAGE for each region by dividing by its respective silver standard
standard error value from the regression estimation to compare βAGE effect size across all regions
for the permutations. Unlike βAGE, we cannot get silver standard estimates for the standard errors

of γ̂�sf and δ̂�sf, so we cannot normalize the values with reference to the silver standard.

Additionally, since γ̂�sf and δ̂�sf are estimated iteratively via the EM algorithm, they are highly
dependent on each other, and normalizing them independently may introduce bias. Thus, we

leave γ̂�sf and δ̂�sf unchanged from ComBat for comparisons to the silver standard. We also look
at the average root mean squared errors of the differences between γ̂�BLSA;f and γ̂�VMAP;f and

between the log of δ̂�BLSA;f and the log of δ̂
�
VMAP;f across all regions in order to assess the relative

scalings and shifts of the feature distributions.

2.9 Checking Assumptions
To determine if the instability of ComBat is related to the assumptions that the model makes, we
assess the following.

1. Normality of residuals: from Eq. (1), ComBat assumes that the error/noise in the features
being harmonized is normally distributed about the regression line fit by the model with a
mean of zero and some variance σ2f.

2. Distributions of scaling and shifting: for the parametric version of ComBat, γ̂�sf
for each site s is normally distributed, while δ̂�sf for each site follows an inverse gamma
distribution.

3. Covariates for ComBat are uncorrelated.

Note that the ComBat model for the data in Eq. (1) represents biological covariates as caus-
ing linearly independent variation in the data. Further, ComBat assumes that the biological varia-
tion in the data is separable from the variation due to site/scanner biases, which requires the
biological covariates to not be strongly correlated with the batch variable. We assess (1) and
(2) by evaluating the negative log likelihoods of the residual distributions compared to the
assumed prior distributions. For the residuals of the model and γ̂�sf, we use the mean and standard
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deviations of the empirical distributions to generate a normal distribution fit to the data and assess
the average negative log likelihood across all empirical data points compared to the generated

normal distribution. For δ̂�sf, we estimate the inverse gamma distribution as

EQ-TARGET;temp:intralink-;e007;117;697Inv GammaðxÞ ¼ β̃α̃

Γðα̃Þ ð1∕xÞ
α̃þ1 expð−β̃∕xÞ; (7)

where Γ is the gamma function and α̃; β̃ are the shape and scaling parameters of the distribution
respectively that we calculate as

EQ-TARGET;temp:intralink-;e008;117;634α̃ ¼ μ2IG
σ2IG þ 2

; (8)

EQ-TARGET;temp:intralink-;e009;117;584β̃ ¼ μðα̃ − 1Þ; (9)

where μIG is the mean and σ2IG is the variance of δ̂�sf. We calculate the average negative log
likelihood across all ComBat estimated values compared to the generated inverse gamma dis-

tribution. For the residuals, γ̂�sf , and δ̂
�
sf , we compare the average negative log likelihood values to

the respective silver standard values to assess whether the experimental runs violate the assump-
tions more or less than the silver standard cohort. We also assess normality of the experimental
residuals with the Anderson–Darling test.

2.10 Comparison to Other Linear Models
To assess the stability of ComBat compared to other linear models, we also perform the same
analysis of root mean squared error in normalized βAGE compared to the silver standard on the
same data subsets of ComBat experimental runs for an ordinary least square (OLS) and linear
mixed effects (LME) model. The OLS is the same as Eq. (6), but without the prior ComBat
harmonization of the data. The LME is modeled as

EQ-TARGET;temp:intralink-;e010;117;414ŶROI ∼ 1þ XAGEβAGE þ XSEXβSEX þ XSITEbSITE þ XMCIβMCI þ ε; (10)

where bSITE is a random effects term for the site covariate.

3 Results
To make a comprehensive comparison of experimental parameters, we visualize the three-
dimensional feasibility matrix as 2D slices along the covariate shift axis with total sample size
and sample size imbalance as the x and y axes (Figs. 2 and 3). Additionally, since there are 112
ROIs to consider, we condense information regarding βAGE for mean FA and mean MD to a
single scalar by averaging the standardized effect size change of βAGE across all ROIs. The cor-
responding results using all covariates input to ComBat rather than just those specified in Eq. (6)
can be found in Fig. S1 in Supplementary Material 1. We say that ComBat performs well if the
average standardized effect size change across ROIs is closer to zero. The general trend in per-
formance for ComBat is a decrease in performance as we move further away from the silver
standard with our experimental parameters. This decrease in performance is evidenced by the
gradation in color from purple to yellow. Experimental parameters that are not feasible are grayed
out. To assess if the ComBat residuals are larger at one site compared to the other, we visualize
the site-wise residuals for mean FA and mean MD (Fig. S2 in Supplementary Material 1). We
observe that both sites are represented evenly across the entire residual distribution. Estimates of

βAGE, γ̂�sf, δ̂
�
sf and the log of δ̂�sf , and the standard error of βAGE for the silver standard can be

found in Supplementary Material 2 as a CSV file.

3.1 Total Sample Size and βAGE
To evaluate ComBat’s reliability with respect to N, we plot root mean squared error of normal-
ized βAGE for each ROI averaged across all 10 iterations against the total sample size (Fig. 4). The
total sample size is spaced logarithmically, so the expected trend in error as N increases will be a
linear decrease with respect to logarithmic increases in sample size. At small sample sizes, the
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decrease in error does not follow this trend. We only consider experimental permutations that
have a zero-year covariate shift and a 10:10 imbalance in sample size. We consider ComBat to be
“stable” as long as βAGE for 50% of the ROIs are within one standard deviation of the respective
silver standard, and “unstable” otherwise. For harmonization of mean FAvalues, we observe that
ComBat becomes unstable at sample sizes of N < 162. For a more conservative threshold, where
all ROIs are within one standard deviation away, we observe instability for N < 252.

3.2 Sample Size Imbalance and βAGE
To examine the error in βAGE estimation with respect to sample size imbalance, we plot the root
mean squared error of βAGE for each ROI averaged across all 10 iterations against the sample size
imbalance for both sample sizes that would make ComBat stable and unstable (Fig. 5, Fig. S3 in
Supplementary Material 1). We only consider experimental permutations that have a zero-year
covariate shift. We do not observe sample size imbalance to have an effect on the estimation of
βAGE, as the error fluctuates for all levels of imbalance.

Fig. 3 Comparing to Fig. 2, the RMSE of standardized βAGE estimates for MD vs age show insta-
bility in ComBat as well, since the error also increases when the cohort changes to have an aver-
age mean age difference between VMAP and BLSA of (a) 0 years, (b) 2 years, (c) 4 years, (d) 6
years, (e) 8 years, and (f) 10 years. Data are plotted in the same manner as Fig. 3.

Fig. 2 The root mean squared error (RMSE) of standardized βAGE estimates for mean FA versus
age compared to the silver standard indicate that ComBat is not stable with all experimental per-
mutations considered, as the error increases when the cohort changes to have an average mean
age difference between VMAP and BLSA of (a) 0 years, (b) 2 years, (c) 4 years, (d) 6 years, (e) 8
years, and (f) 10 years. The values represent the mean normalized RMSE across EVE Type-III
Atlas regions averaged across 10 iterations of each feasible point in the experimental space. For
each subplot, total sample size of the cohort is on the x -axis and sample size imbalance is on the y -
axis, where Y∶10 represents Y participants at VMAP for every 10 at BLSA. Any non-feasible
experimental permutations are represented in gray.

Kim et al.: Empirical assessment of the assumptions of ComBat with diffusion. . .

Journal of Medical Imaging 024011-8 Mar∕Apr 2024 • Vol. 11(2)

https://doi.org/10.1117/1.JMI.11.2.024011.s01


3.3 Covariate Shift and βAGE
To examine the error in βAGE estimation with respect to covariate shift, we plot the root mean
squared error of βAGE for each ROI averaged across all 10 iterations against the covariate shift
(Fig. 6, Fig. S4 in Supplementary Material 1). We only consider experimental permutations that

Fig. 5 RMSE for standardized βAGE of mean FA versus age compared to the silver standard for
sample sizes of (a) N ¼ 306, (b) N ¼ 288, (c) N ¼ 270, (d) N ¼ 252, (e) N ¼ 234, (f) N ¼ 216,
(g) N ¼ 198, (h) N ¼ 180, (i) N ¼ 162, (j) N ¼ 144, (k) N ¼ 126, and (l) N ¼ 108. Covariate shift
does not seem to have a definitive threshold at which the error in estimation of βAGE is much larger
compared to the respective experimental run with no covariate shift. For an all-encompassing
threshold ambiguous to the size of N , we suggest a maximum covariate shift of 2 years between
sites because a covariate shift of either 4 or 6 years increases the error in estimation of βAGE

depending on N . Only experimental permutations that have an imbalance ratio of 10:10 were
considered.

Fig. 4 (a) For decreasing sample size, the expected trend for a well-behaved model is error
increasing by a factor of

ffiffiffiffi
N

p
. Thus, the trend in error in the logarithmic space is linear with increas-

ing N . We consider ComBat to be “stable” with respect to N when the RMSE for standardized βAGE

of mean FA versus age compared to the silver standard is below 1 (blue line) or the error follows
the error trend stated. On this criterion, we suggest that ComBat is unstable when N < 162, as over
50% of the errors of ROIs for N ¼ 144 are above 1 and the increase in error in not linear in the
logarithmic space. (b) RMSE for standardized βAGE of mean MD versus age shows ComBat
remaining stable forN > 162, indicating that different DTI scalars have different levels of sensitivity
to changes in sample size for ComBat. To observe the effect of only sample size on ComBat, only
permutations with an imbalance level of 10:10 and no covariate shift were considered.
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have a 10:10 sample size imbalance level. For stable sample sizes, we observe stability along the
covariate shift axis at mean age differences of up to 2 to 4 years between sites. As this threshold
fluctuates among sample sizes, we consider a conservative threshold at 2 years and a looser
threshold at 4 years. The average effect size for each level of covariate shift can be found in
Table S1 in Supplementary Material 1.

3.4 Comparison to Silver Standard - γ̂�sf and δ̂�sf
To examine the error in harmonization, we perform a comprehensive visualization of root mean

squared error of γ̂�sf and the log of δ̂�sf for each site at each feasible experimental parameter
(Figs. 7 and 8). Unlike sample size with βAGE, we do not have expectations of well-behaved

models for changes in γ̂�sf and δ̂�sf. As the γ̂�sf and δ̂�sf estimates are the measures of site bias,
we consider ComBat to be unstable with any deviation from the silver standard values, as any
error would result either in site bias not being removed completely or removing variability attrib-
uted to biological factors. The gradation in color indicates increasing error as we move further
away from the silver standard.

For γ̂�sf, in terms of sample size, we observe a threshold of around N ≥ 252 for ComBat
stability, similar to the conservative threshold for sample size in error estimation of βAGE; along
the sample size imbalance axis, we observe a threshold of around a 10 : 9 imbalance ratio
between sites; and along the covariate shift axis, we observe a threshold of around four years.

For δ̂�sf, in terms of sample size, we observe a threshold of around N ≥ 308 for ComBat stability;
along the sample size imbalance axis, any imbalance in sample size results in ComBat instability;
and along the covariate shift axis, we observe a threshold of up to 2 years in mean age difference
between sites for ComBat stability.

For the shift differences compared to those of the silver standard, we observe changes in
γ̂�BLSA;f − γ̂�VMAP;f that are less consistently responsive to changes in the experimental parameters
(Fig. 9, Fig. S5 in Supplementary Material 1) than for the site-wise root mean squared errors of
γ̂�sf for both sites. Still, we observe a similar threshold of around N ≥ 252 for γ̂�sf in terms of
respective shift stability, a threshold of 9:10 for imbalance ratio between sites, and a covariate

shift threshold of four years. For logðδ̂�BLSA;fÞ − logðδ̂�VMAP;fÞ, we similarly observe less consis-
tent responses to changes in the experimental parameters than for the site-wise root mean squared
errors. Similar to the site-wise estimation errors, we observe that any imbalance results in

Fig. 6 Sample size imbalance alone does not substantially affect estimation of βAGE for mean FA
harmonization; only at smaller N does it appear to have an effect. However, this is likely due to the
small sample size at these experimental permutations. Only experimental permutations that have a
covariate shift of 0 years were considered. Panels (a)–(l) are the same N as Fig. 5.
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ComBat instability and a threshold of 2 years for imbalance ratio and covariate shift, respectively.

However, we observe a threshold of N ≥ 252 for logðδ̂�sfÞ in terms of respective scaling stability,
which is less restrictive than that of the lone site-wise estimates.

3.5 Analysis of Assumptions
We visualize distributions of experimental run residuals for mean FA compared to the silver
standard residuals in Fig. 10 and plot the average of the negative log likelihoods of residuals
in Fig. 11 (see Figs. S6 and S7 in Supplementary Material 1 as well). We do see an increase
in the negative log likelihoods as we decrease sample size, in spite of an increase in error for the
estimation of βAGE. At the smallest sample sizes, where the estimation for βAGE has the most

Fig. 7 γ̂�sf and log δ̂�sf do not follow the same trend in error as βAGE for harmonization of mean FA
values. (Top left) RMSE error in γ̂�sf estimates for VMAP averaged across ROIs with total sample
size on the y -axis and sample size imbalance on the x -axis at covariate shift levels of (a) 0 years,

(b) 2 years, (c) 4 years, (d) 6 years, (e) 8 years, and (f) 10 years. (Top right) Error in log δ̂�sf esti-
mates for VMAP averaged across ROIs and plotted in the same order as top left. Bottom left and

bottom right plots are the RMSE in γ̂�sf and log δ̂�sf estimates for BLSA respectively, with slices
along the covariate shift axis presented the same as top left. For ComBat to accurately estimate

site bias, γ̂�sf and δ̂�sf should be as close to the silver standard values as possible. Thus, we suggest
a maximum covariate shift of 2 years, an imbalance of 9:10 and a total sample size of N > 252 for
stability in both ComBat parameters, as these experimental parameters have a relative error close
to zero.
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error, the negative log likelihood is at its most negative values, indicating the residuals for small
sample sizes are, on average, more normally distributed than other experimental bootstraps and
the silver standard. The results from the Anderson–Darling test are also in agreement with the
negative log likelihood analysis for sample size, as the residuals are normally distributed more
often at lower sample sizes, which do not follow the trend of increasing error of βAGE with
decreasing sample size (Fig. 12). We see a decrease in the negative log likelihoods as we move
further from the silver standard along the covariate shift axis. We see a slight increase in the
negative log likelihoods as we move further along the sample size imbalance axis, indicating
that sample size imbalance may lead to violation of the assumptions of ComBat. However, the
Anderson–Darling results suggest that neither imbalance ratio nor covariate shift have a consis-
tent effect on the normality of the residuals.

We visualize distributions of γ̂�sf and δ̂�sf obtained from mean FA harmonization as kernel
density estimates compared to respective prior distributions in Fig. 13 and plotted the average
negative log likelihoods of both parameters in Figs. 14 and 15. Corresponding plots for mean MD
harmonization can be found in Figs. S8–S10 in Supplementary Material 1. For γ̂�sf, total sample
size does not appear to have an effect on the shape of the distributions for experimental runs until

Fig. 8 RMSE error in estimates for (top left) VMAP γ̂�sf , (top right) VMAP log δ̂�sf , (bottom left) BLSA

γ̂�sf , and (bottom right) BLSA log δ̂�sf for harmonization of mean MD values increase much more
quickly than they do for harmonization of FA values. Slices along the covariate shift axis are plotted
similarly to Fig. 7.
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N ¼ 36, at which point there is a large increase in the negative log likelihoods. For mean FA, we
observe that γ̂�sf distributions are not normally distributed until around N ¼ 36 according to the
Anderson–Darling test (Fig. 16), which agrees with the negative log likelihood values. The
results from the Anderson–Darling test for mean MD harmonization are plotted in Fig. S11
in Supplementary Material 1. However, sample size imbalance appears to affect the distributions,

Fig. 9 RMSE for γ̂�BLSA;f − γ̂�VMAP;f of experimental runs compared to the silver standard averaged
across ROIs shows a similar threshold for stability of around N ≥ 252 as the lone RMSE of γ̂�sf for
both sites. However, the stability of the difference for log δ̂�BLSA;f − log δ̂�VMAP;f shows a looser

threshold of N ≥ 252 compared to the lone RMSE of log δ̂�sf for both sites for mean FA
harmonization.

Fig. 10 The residuals from the ComBat model for the silver standard (blue, N ¼ 358) do not
adhere to the assumption of normality given the heavy left tail. As we step further from the silver
standard in terms of sample size, imbalance, and covariate shift, we expect the residuals to
become even less normally distributed if the assumption of residual normality directly impacts the
error in βAGE for experimental runs (blue). Decreasing sample size does not appear to consistently
lessen the tail of the residual distributions. The residuals plotted above are for the left genu of the
corpus callosum for mean FA harmonization.
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as VMAP γ̂�sf deviate from normal and BLSA γ̂�sf tend to normal as we move further from the
silver standard along the covariate shift axis. Covariate shift does not appear to affect the dis-
tribution of γ̂�sf .

For δ̂�sf, neither covariate shift nor sample size appears to affect the negative log likeli-

hoods of the distributions. For VMAP, imbalance appears to have no effect on δ̂�sf , whereas a

Fig. 11 (a)–(f) The average negative log likelihood that the residual distribution follows a normal
distribution (with mean and standard deviation estimated from the residual distribution) decreases
as we decrease in sample size, and is smallest when the sample size is <50, suggesting that the
residual distributions are more normal at low sample sizes for mean FA harmonization. This con-
trasts with the increasing error of βAGE with decreasing sample size, suggesting that looking at the
distribution of the assumptions alone cannot indicate if ComBat is appropriate for removing site
biases of the given input cohort. Thus, we suggest the bootstrapping methodology to determine
reliability of ComBat for site bias removal. Difference of average negative log likelihoods for
residual distributions between experimental runs and the silver standard negative log likelihoods
(averaged across all ROIs). Slices along the covariate shift axis are plotted similarly to Fig. 2.

Fig. 12 The Anderson–Darling test results suggest that the increase in error for βAGE, and thus the
stability of ComBat, cannot be assessed by a decrease in normality of the residuals for either mean
FA (top) or mean MD (bottom) harmonization.
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Fig. 14 Similar to the ComBat model residuals, the VMAP average negative log likelihoods of the

γ̂�sf estimates (top) for a normal distribution and δ̂�sf estimates (bottom) for an inverse gamma dis-
tribution of experimental runs compared to the respective silver standard values do not correlate
with the error trends for βAGE in mean FA harmonization. This suggests that we cannot look at the

distributions of γ̂�sf and δ̂sf to examine whether the input cohort is suitable for ComBat harmoni-
zation based on the premise of a violation of ComBat assumptions.

Fig. 15 BLSA average negative log likelihoods for γ̂�sf (top) and δ̂�sf (bottom) compared to the
respective silver standard values do not correlate with the error trends for βAGE in mean FA
harmonization.
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greater imbalance makes BLSA δ̂�sf closer to an inverse gamma distribution, indicating

that a larger proportion of the total sample size will make δ̂�sf distributed more similarly to
an inverse gamma distribution. We also calculate the correlation matrix of covariates for the
silver standard cohort (Fig. 17) and do not find unexpectedly high correlations between any
covariates.

Fig. 17 For the silver standard, the covariates are not highly correlated. We expect a correlation
between age and diagnosis, as participants with MCI are more likely to be older. The correlations
between race/ethnicity and site are non-zero but are substantially <1.

Fig. 16 The Anderson–Darling test results suggest that the increase in error for βAGE, and thus the
stability of ComBat, cannot be assessed by a decrease in normality of γ̂�sf for mean FA
harmonization.
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3.6 Comparison to Other Linear Models
We do not observe asymmetry in the pairwise comparison of model errors for either mean FA or
mean MD for ComBat versus OLS and LME (Figs. 18 and 19). Practically speaking, ComBat is
similar to both LME and OLS when trying to harmonize DTI datasets with matched pairs.

4 Discussion
Orlhac et al. showed that for harmonization of PET imaging biomarkers between two sites,
ComBat becomes less reliable at sample sizes less than N ¼ 20 to N ¼ 30 per site through
a bootstrap analysis similar to ours.22 They also suggested in a latter conclusion that if covariates
are used, N ¼ 20 to N ¼ 30 samples per covariate are used at each site. The work herein shows
that their suggestion cannot be easily generalized to continuous covariates, such as age. Our
results suggest that, for harmonization of dMRI measures, ComBat becomes unstable at even
larger sample sizes per site. Given that DTI-derived data does not appear to be normally dis-
tributed, often having heavy tails, it is understandable that larger sample sizes are necessary
in order for ComBat to remain stable in its estimates. For stability in estimates of γ̂�sf and

δ̂�sf, the differences between sites have looser thresholds than those for the lone site-wise esti-

mates. We note that the assessment of the error in site-wise γ̂�sf and δ̂
�
sf should be viewed with the

lens of the identifiability issue [Eq. (4)], and assessments of the differences between sites for γ̂�sf
and δ̂�sf are more representative of the stability of ComBat estimates.

Johnson et al., the creators of the ComBat model, and Fortin et al., the first to harmonize
dMRI data using ComBat, suggested at least N ≈ 20 per site for ComBat harmonization to be

Fig. 18 Pairwise comparisons for all experimental permutations of ComBat to OLS and LME mod-
els for βAGE of mean FA suggest that ComBat is very similar to other linear models for pairwise DTI
harmonization.

Fig. 19 Pairwise comparisons for all experimental permutations of ComBat to OLS and LME mod-
els for βAGE of mean MD suggest that ComBat is very similar to other linear models for pairwise DTI
harmonization. For permutations with very large error, ComBat may have slightly more stability.
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reliable.14,15 Further, both posit that if the distributions of γ̂�sf and δ̂�sf follow the respective prior
distributions, then parametric harmonization of ComBat is reliable. Our results suggest that the
increase in estimation of βAGE does not appear to correlate with a violation of the assumptions of
ComBat, indicating that the reliability of ComBat cannot be assessed by plotting the distribution

of the residuals, γ̂�sf , and δ̂�sf . This contradicts Johnson et al., Fortin et al., and Orlhac et al.,
suggesting that the ComBat model is more complex and nuanced than originally believed, espe-
cially in the context of dMRI data. Thus, to ensure a true evaluation of an input cohort to
ComBat, we suggest a bootstrapping method similar to the one implemented in this work.
Note, we do not suggest that ComBat or statistical harmonization are not important or reliable
methods for harmonization of dMRI data. Rather, we advocate caution when assessing whether it
is an appropriate model, particularly for harmonizing different cohorts with a disjoint covariate
overlap or small sample sizes.

However, we note that not every multi-site dataset we wish to harmonize will be well
matched like our silver standard and may thus require more data or stricter thresholds for stability
of ComBat. Future work may wish to examine if the reliability of ComBat is similar for the same
total sample sizes, but smaller sample sizes per site with more sites. Harmonization of three or
more sites may also yield greater differences in error between the ComBat model and the other
linear models. Additionally, we only consider three experimental axes along, which we could
examine the reliability of ComBat. A deeper analysis could be performed using additional con-
siderations listed in Bayer et al. that we do not address or other cohort modifications that could
influence the performance of ComBat. We also only consider age for the covariate shift axis,
whereas analysis of categorical covariate shifts or covariate shifts of multiple covariates could
yield different results.

Another consideration that we do not examine in this work is the effect of image b-value
correction prior to ComBat harmonization. For dMRI acquisitions with 500 < b-value < 1500 s∕
mm2, the diffusion-weighted signal is approximately linearly scalable in the logarithmic space,
and previous work has shown that b-value correction using this approximation can help remove
site differences.39,40 Given that the b-values for both VMAP and BLSA are different and fall
within this range, future work could address if a prior b-value scaling would increase the stability
of ComBat at smaller sample sizes or larger covariate shifts.
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