
Automatic correction of dental
artifacts in PET/MRI

Claes N. Ladefoged
Flemming L. Andersen
Sune. H. Keller
Thomas Beyer
Ian Law
Liselotte Højgaard
Sune Darkner
Francois Lauze



Automatic correction of dental artifacts in PET/MRI

Claes N. Ladefoged,a,* Flemming L. Andersen,a Sune. H. Keller,a Thomas Beyer,b Ian Law,a
Liselotte Højgaard,a Sune Darkner,c and Francois Lauzec

aUniversity of Copenhagen, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9,
Copenhagen 2100, Denmark
bCenter for Medical Physics and Biomedical Engineering, General Hospital Vienna, 4L, Waehringer Guertel 18-20, Vienna 1090, Austria
cUniversity of Copenhagen, Department of Computer Science, Universitetsparken 5, Copenhagen 2100, Denmark

Abstract. A challenge when using current magnetic resonance (MR)-based attenuation correction in positron
emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings
that is segmented as artificial air-regions in the attenuation map. For artifacts connected to the background, we
propose an extension to an existing active contour algorithm to delineate the outer contour using the nonatten-
uation corrected PET image and the original attenuation map. We propose a combination of two different meth-
ods for differentiating the artifacts within the body from the anatomical air-regions by first using a template of
artifact regions, and second, representing the artifact regions with a combination of active shape models and k-
nearest-neighbors. The accuracy of the combined method has been evaluated using 25 18F-fluorodeoxyglucose
PET/MR patients. Results showed that the approach was able to correct an average of 97� 3% of the artifact
areas. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
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1 Introduction
Combined PET/MR imaging systems have recently become
available to clinical users.1 The original MR-based attenuation
map (μ-map) is obtained in a different manner depending on the
vendor. The fully integrated PET/MR system (Biograph mMR,
Siemens Healthcare)2 uses the Dixon volumetric interpolated
breath-hold examination sequence,3 from which a segmentation
of the images is made into the four classes air, [linear attenu-
ation coefficient (LAC) μ ¼ 0 cm−1], lung (0.0224 cm−1), fat
(0.0854 cm−1), and soft tissue (0.1 cm−1). The accuracy of
MR attenuation correction (AC) is challenged by susceptibility
effects caused by dental fillings and metal braces.4–7 The effect
of a metal implant can be a signal void around the metal filling in
the MR images [Figs. 1(a)–1(c)], resulting in the area incorrectly
being set to air in the μ-map [Fig. 1(d)].

Prevailing techniques for calculating correct μ-maps has been
suggested in numerous literature cases. Methods based on the
introduced time-of-flight technique are not discussed here, as
it is not an option for current mMR. We refer to Ref. 8 for
an extensive overview of the greatest number of the existing
methods. None of these methods are focused on the task of
correcting susceptibility artifacts in the dental region, which is
currently without a satisfactory solution.9

The main challenge in all methods is corrupted data caused
by metal implants. Several authors have investigated the use of
PET images for outer contour delineation to compensate for
truncation artifacts due to the limited MR field of view in
whole-body imaging. The method proposed in Ref. 10 uses a
maximum-a-posteriori algorithm to jointly estimate activity
map and the missing parts of the corresponding attenuation

map, whereas Ref. 11 locates the outer contour by looking
for a PET signal in areas where truncation artifacts are expected.
While being successful for truncation artifact correction, the per-
formance of either method in the dental region has not been
studied. The latter method depends on the existence of a signifi-
cant PET signal in the voxels at the borders. This assumption is
not always true regarding AC-PET images in the presence of
larger artifacts. In most cases, however, a signal will be present,
only significantly decreased. The decrease is not predictable, as
it depends on the size and shape of the artifact.

Due to this fact, it is preferable to use the only image not
influenced by susceptibility artifacts: the nonattenuation cor-
rected (NAC)-PET image. An active contour algorithm is
used in Ref. 12 to detect the contour on the NAC-PET images.
This approach is similar to the approach we are presenting in this
study; however, our study deviates by the segmentation algo-
rithm and, more importantly, by the fact that we also handle
the problem that the body contour segmented on the NAC-
PET image is larger than the μ-map. This problem is also
noted by the authors of Ref. 12, who found the error had caused
an overestimation of PET values of 6% and 8% in two lesions
located in the neck region.

Correction of artifacts within the body was studied in Ref. 4.
The authors proposed to use an atlas-based method in which
artifact regions are outlined in 11 patients. The performance
of the method has not been studied in patients with dental
artifacts.

It has previously been shown that the artifact region can be
much larger than the actual metal implant,6,13,14 and is usually
oval shaped for round fillings.15 The size and shape of artifacts can-
not be predicted just by knowing size, positioning, and material of
an implant.16 An artificial connection to air-regions, such as the
maxillary sinuses, can occur when the metal is located near
these. Furthermore, if the implant is located near the anatomical
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surface, which is often the casewith dental fillings, the artifact can
appear connected to the background, as seen inFig. 1(d).We chose
to separate the artifacts into two types:

Type A: signal voids breaching the anatomical surface,
Type B: signal voids fully enclosed by soft tissue.

Both type A and B can be connected to the sinuses or other
air regions.

We present a fully automatic method to correct for dental
artifacts caused by metal fillings. For the contour delineation
of type A artifacts, we extended the original segmentation
method proposed by Chan and Vese17 with extra fitting terms
evolving the contour, not only to match the PET image, but
also in order to attract the contour toward the original μ-map.
Type B artifacts are handled by a combination of two methods.
The first method fills signal voids overlapping a mask of the
dental region defined on a MR-template generated on 30
patients. The second is a supervised learning-based method,
employing active shape models (ASM)18 to locate a set of
patient landmarks, followed by k-nearest-neighbors (kNN) to
classify each of the signal voids by their offset on each of
the landmarks, as in Ref. 19. For this work, we have employed
realistically simulated artifacts in a patient cohort greater than
the one used in Ref. 19. The artifacts are superimposed from
four patients with dental artifacts following a coregistration.
Having the original μ-map without dental artifacts enabled
us to directly quantify improvements obtained by the method.
Finally, we combined all proposed methods into a final approach.

2 Materials

2.1 Patients and Imaging Protocol

We selected 25 patients without dental artifacts (15 males, 10
females; median age: 60 y, range: 21 to 82 y). The patients

were injected with a mean of 205 MBq 18F-fluorodeoxyglucose
(range: 191 to 337MBq). The patients were all routine oncology
or neurology patients in the context of a clinical study approved
by the local ethical committee. All patients gave their written
informed consent for the PET/MR examination. They were
positioned head first, with their arms down, on the fully inte-
grated PET/MR system (Biograph mMR; VB18p, Siemens
Healthcare2), and data was acquired over a single bed position
of 25.8 cm covering the head and neck. The emission acquis-
ition time was 10 min. The PET images used in this study were
reconstructed with and without MR-AC using three-dimensional
(3-D) ordinary Poisson-ordered subset expectation maximiza-
tion (4 iterations, 21 subsets, 3 mm Gaussian filter postrecon-
struction) on 344 × 344 × 127 matrices (0.8 × 0.8 × 2.0 mm3

voxels) into the resulting images. The DIXON-water images
and μ-maps were reconstructed on 192 × 126 × 128 matrices
(2.6 × 2.6 × 3.1 mm3 voxels). The sagittal T1-weighted (T1w)
MPRAGE images, used in the correction algorithm, had a
matrix size of 512 × 512 × 192 (0.5 × 0.5 × 1 mm3 voxels).

2.2 Construction of Artifact μ-maps

We created four artifact masks by manually segmenting four
common types of dental artifacts on real patient data (Fig. 2).
Artifact 1 and 2 are artifacts of type A, and artifact 3 and 4
are type B. Artifact 1 [Fig. 2(a)] is a large artifact that removes
most of the mandibular and nose regions. The artifact exceeds
the anatomical surface and is always connected artificially to
the sinuses. Artifact 2 [Fig. 2(b)] is bilateral and connected
both to the background and often also to the sinuses. Artifact
3 [Fig. 2(c)] is a unilateral artifact in the inferior left part of
the mouth, which is never connected to anatomical air-regions.
Artifact 4 [Fig. 2(d)] is also a unilateral artifact, but compared to
artifact 3 is more than twice its size, and located in the superior

Fig. 1 Illustration of two types of artifacts: (a)–(d) type A and (e)–(h) type B, the first breaching the ana-
tomical volume, the second not: (a), (e) sagittal T1w MR image shown in transaxial orientation; (b), (f) fat,
and (c), (g) water-image composition from in- and out-phase MR from Dixon VIBE sequence used for
attenuation map segmentation; and (d), (h) MR-based attenuation map (μ-map) with dental artifact.
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left part of the mouth, meaning it is often connected to the left
maxillary sinus.

The artifacts were applied to 25 patient artifact free μ-maps
using semiautomatic alignment of the simultaneously acquired
AC-PET, T1w and DIXON-water images to the patients with
true artifacts using minctracc (McConnell Imaging Center,
Montreal20). The objection function of the Procrustes alignment
was cross-correlation. By substituting soft tissue voxels with
values representing air in the masked area we created 4 × 25
μ-maps with dental artifacts and corresponding ground truth
μ-maps. The placement of the simulated artifacts were visually
inspected to ensure that the listed specific properties were main-
tained for all subjects within each artifact type.

3 Methods
In the following, we present how to handle type A artifacts; that
is signal voids breaching the anatomical surface, and type B arti-
facts; that is a separation from anatomical signal voids within
the body.

3.1 Type A Artifact Correction

Applying an active contour algorithm to the NAC-PET image
[e.g., Fig. 3(a)] removes the connection of the artifact void to
the background. However, the boundary on the NAC-PET
volume is different than the original μ-map, as the volume with
PET uptake tends to be larger than the segmentation of the ana-
tomical volume, as it was also reported in Ref. 12, and shown in
Fig. 3(b). To address this problem, we present a slice-by-slice-
based method. The full method consists of following steps:

Chan–Vese segmentation
Boundary estimation from the NAC-PET image

using the original Chan–Vese (CV) active contour
algorithm.

First erosion of segmented image
A postprocessing refining the segmentation where

the μ-map is known.

Postsegmentation
A segmentation that incorporates both the NAC-PET

image as well as the original μ-map.

Second erosion of segmented image
A postprocessing refining the new segmentation

where the μ-map is known.

The first segmentation and erosion were performed to
obtain a coarse estimate of the PET volume. This vol-
ume was compared to the μ-map in order to detect and
estimate the size of any dental artifacts. By relating
the estimated artifact sizes to fitting term weights, we

Fig. 2 Patient data of the four real artifacts used to create the simulated are masked in red as seen on the
sagittal and transaxial orientations [(a) and (b): type A, (c) and (d): type B]. (a) Large artifact removing the
nose and mouth regions; (b) bilateral artifact connected to the background and sinuses; (c) unilateral in
inferior part of the mouth, and (d) unilateral in superior part of the mouth.

Fig. 3 (a) Nonattenuation-corrected PET image and (b) segmented
outer area (blue) of (a) and binary μ-map mask (red) overlaid into
(a). Notice the outer contour of the nonattenuation corrected
(NAC)-PET image is different from that of the μ-map. The grid illus-
trates the posterior and anterior half of the volume, and the three
yellow points are the points used in the erosion of that slice.
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performed a second segmentation and erosion step
where the μ-map was incorporated. We now proceed
to a more thorough description of these steps.

3.1.1 Chan–Vese segmentation

The CV algorithm17 segments an image u0 by dividing it into
two segments whose average values differ the most, while main-
taining contour regularity. Segmentation is obtained by minimi-
zation of the following function

ECVðϕ;ci;coÞ¼μ

Z
j∇HðϕÞjþν

Z
HðϕÞ

þλi

Z
Ω
HðϕÞju0−cij2þλo

Z
Ω
Hð−ϕÞju0−coj2;

(1)

where ϕ is the level set function used to delineate two regions,
the inner region corresponding to ϕ ≥ 0 and the outer one cor-
responding to ϕ < 0, while ci and co are easily shown to be an
average image values for the inner and outer regions, respec-
tively. Here, the two regions separated are the patient and back-
ground, and the inner region refers to the patient volume. The
function HðtÞ is the Heaviside function, HðtÞ ¼ 1 if t ≥ 0, and
HðtÞ ¼ 0 otherwise. The first term of Eq. (1) controls the length
of the region boundary, while the second controls the volume of
the inner region. In this work we have ignored it, setting ν ¼ 0.
Following,17 we used a regularized version of H. The solution
was obtained by gradient descent as in Ref. 17.

For the purpose of estimating model parameters, we first seg-
mented the NAC-PET volume using Eq. (1) where we initialized
the contour at the position of the μ-map and set the parameters
λi ¼ λo ¼ 100 and μ ¼ 1. The high value for the λ terms was
selected to ensure that the contour placed itself on the outside
of the NAC-PET volume.

3.1.2 First erosion of segmented image

The CV segmented volume is larger than the original μ-map.
Assuming that the artifact does not extend to the posterior
half of the μ-map [see the black box in Fig. 3(b)], we have mini-
mized the overestimation by doing the following for each slice:

1. Perform an erosion on the segmented image with
a disk size equal to the maximum distance between
the found contour and the original μ-map at the
three extreme points located posterior, left and right
on the transaxial segmented image [Fig. 3(b)].

2. Insert μ-values if the erosion removed valid μ-map
values.

3. Overwrite the lower half of the segmented volume
with the original μ-map.

For each slice, the posterior half was determined by locating
the two most extreme points in the lateral direction, and splitting
the volume in two [Fig. 3(b)].

3.1.3 Postsegmentation

To force the contour toward the true anatomical boundary, we
extended the original segmentation method in Eq. (1) by two
extra fitting terms to match the original μ-map. The first fitting
term attracts the contour towards the μ-map. The second fitting
term prevents the contour from evolving into the μ-map. The
resulting level set segmentation functional is defined by

EðϕÞ ¼ ECVðϕÞ þ
λMRi

2

Z
Ω
½HðϕÞ − χMR�2

þ λMRo

2

Z
Ω
½Hð−ϕÞ − ð1 − χMRÞ�2; (2)

where ECVðϕÞ is Eq. (1) and χMR is the binary map, which is 1
where the original μ-map differs from zero. The parameter λMRi

Table 1 Lookup table to convert size of artifact to parameters.

Pixels μ λo λi λMRi
λMRi

τ i

>500 10 100 20 1 1 50 100

>450 10 70 20 1 1 50 100

>400 10 60 20 1 1 50 100

>350 5 50 20 1 1 30 75

>300 5 40 20 1 1 30 75

>250 5 30 15 1 1 30 75

>200 5 20 15 1 1 30 75

>100 5 10 10 1 1 30 75

>0 3 7 7 1 1 15 50

¼ 0 1 5 5 0.1 1 10 30

Fig. 4 Steps to compute size of an artifact in a slice: (a) NAC-PET image, (b) segmented and eroded
image found from (a), (c) original μ-mapmask, (d) difference image between (b) and (c), and (e) smoothed
and thresholded version of (d) shown in red on μ-map from (c) in white.
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controls the similarity of the new level curve and the original
μ-map contour. The level set function ϕ was initialized at the
position of the original μ-map. In contrast to the presegmenta-
tion step, the set of parameters ðμ; λo; λi; λMR; λMRi

; λMRo
Þ as

well as the gradient descent parameters, the artificial time
step in the gradient descent, denoted τ, and the number of iter-
ations, i, were tabulated using the estimated artifact size
(Table 1). The area parameter ν was still set to 0. The estimated
size of the artifact was obtained by subtracting the original
μ-map from the presegmentation, followed by a smoothing
and thresholding of it (Fig. 4). Table 1 was created empirically
by testing a large set of parameter combinations and validating
them on real patients with dental artifacts.21

It has previously been reported15 that metal implant induced
artifacts are usually ball-shaped or elongated, which leads to
following assumptions exemplified in Algorithm 1.

• Artifact size does not vary dramatically between neigh-
boring slices. Perform a local smoothing.

• An artifact always spans several consecutive slices.
Remove outliers.

• Artifact size decreases away from the slice(s) where they
peak. If an artifact is found, the artifact size can be propa-
gated to neighboring slices ensuring that all slices contain-
ing the artifact are corrected.

This regularization is done prior to the postsegmenta-
tion step.

3.1.4 Second erosion of segmented image

We increased the parameters λi and λo, controlling the similarity
of the new level curve and the original μ-map contour, in the
slices with large artifacts. Unfortunately, this causes the contour
to diverge towards the result of the nonextended CV. To counter
this effect, we performed the same erosion and overwriting of
image data as in the second step of this method (Sec. 3.1.2).
Finally, identified artifact regions in the μ-map were filled
with a value representing soft tissue (0.1 cm−1). The resulting
μ-map is denoted eCV, shorthand for extended CV.

The flowchart of the eCV method is illustrated in Fig. 5.

3.2 Type B Artifact Correction

The following presents a combination of two methodologies in
handling type B artifacts, i.e., the separation of signal voids
caused by artifacts from anatomical signal voids. Common
for both of these is that they attempt to locate and separate
the dental area, where only artifact signal voids can be present,
from the rest of the head.

3.2.1 Template with mask

To locate the dental area, we introduced external knowledge in
the form of a template with the area of potential dental artifacts.
The MR water image of 30 patients without dental artifacts were
aligned, and an average image was computed and used as
template. The alignment to the first patient was done by maxi-
mizing a cross-correlation–based objective function using a 12
parameters affine alignment procedure (minctracc, McConnell
Imaging Center, Montreal20). We applied the same transforma-
tion to the μ-maps, in order to create a probability map of
allowed air regions [Fig. 6(a)]. Having a map of the area
where signal voids are allowed to be, we subsequently created
a mask of the dental area where any signal void is considered an
artifact [Fig. 6(b)]. For a new patient, we first aligned the water
image to the template, applying the same transformation to the
μ-map. We filled the signal voids in the patient that overlapped
with the dental area mask with a value representing soft tissue.
The resulting μ-map is denoted Template.

3.2.2 Active shape models

In addition to the method of identifying the dental area by align-
ment to a template, we here attempt to identify the location of
each voxel by their position relative to the anatomical surround-
ings. The surroundings will here be a set of predefined anatomi-
cal landmarks. We chose nine landmarks in the midsagittal slice
of the T1w MR image, six of which were located at a border
with high intensity in the image, and three within the brain.
An example of the chosen slice of a T1w image is shown in
Fig. 7(a), with the nine landmarks overlaid.

In short, the proposed method consists of a point distribution
model (PDM) that contains parameters of the mean, covariance,
eigenvalues, and eigenvectors of a training set of shapes

Algorithm 1 Regularizing the list of artifact sizes. The variable p
represents the array of found artifact pixels for each of the slices.
The regularized list of affected pixels for each slice is denoted pnew.

1: for i ¼ 0 to (lengthðpÞ) do

2: if pði − 1Þ > pðiÞ and pði þ 1Þ > pðiÞ then

3: % If the current slice has a smaller artifact than both of its
neighbors, we update the artifact size to the lowest of the
neighbors

4: pnewðiÞ←minðpði − 1Þ; pði þ 1ÞÞ

5: end if

6: if pðiÞ > 0 and sumðpði − 2Þ; pði − 1Þ; pði þ 1Þ; pði þ 2ÞÞ ¼¼ 0
then

7: % If the slice has an artifact, but none of its neighbors found
any, we consider it an outlier

8: pnewðiÞ←0

9: else if pðiÞ > 0 then

10: % If several slices found artifact pixels, we assume
the neighboring slices are also affected. The size of
the window w is determined by the number of artifact
pixels in the current slice

11: w←floorðpðiÞ∕50Þ

12: % Find the maximum number of artifact pixels

13: maxw←maxðpði − w∶i þ wÞÞ

14: % Update all neighboring slices within the window

15: pnewði − w∶i þ wÞ←maxw

16: end if

17: end for
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manually drawn on a set of patients. An ASM then automati-
cally places the landmarks in the T1w image of a new patient,
using the PDM, as well as local appearance information around
each point. We identified the artifacts in the dental region by
their offset to the anatomical landmarks using a simple kNN

search. The feature space was built by manually sampling air
voxels in the patients from the training set used to construct
the PDM. The flowchart of the method, denoted ASMkNN, is
illustrated in Fig. 8. We will now proceed to a more thorough
description of these steps.

In order to build the PDM, we followed Cootes and Taylor:18

first, we used a full functional generalized Procrustes analysis
(translation, rotation, and scaling) to align the training shapes,
drawn on seven patients without artifacts, to a mean shape and
computed the PDM parameters via principal component analy-
sis. After alignment, we computed a patch average ri from
patches centered around the original locations in each of the
training shapes at each point xi of the mean shape. In a similar
manner to to Ref. 18, we limited the weight vector, ensuring that
the new shape conforms with the shape model, to ensure that the
new shape is similar to the training shapes.

To initially place the mean shape on a new patient T1w MR
image, we computed a rigid registration from the T1w image of a
patient in the training group to the new T1w image, and applied
the same transformation to the shape from the training set image.

Fig. 5 Flowchart of the extended Chan–Vese method.

Fig. 6 (a) Water-template with mask of air-regions from 30 patients
without dental artifacts and (b) water-template with mask of dental
region outside the air-regions.

Fig. 7 (a) Landmarks on T1w; (b) search for displacement patch in local neighborhood around the land-
mark under the nose, where the red point depicts the current landmark placement and green depicts the
best match; (c) first step in next iteration where the grid has been moved and width between points
decreased; (d) sample points in the dental artifact region (red) and in the nonartifact region (green);
and (e) scatter plots of offset between the sample points and two of the landmarks.
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We optimized on local appearance: for each point in our
shape we iteratively found the displacement that best aligned
the precomputed average patch to the actual image content
patch at a corresponding point, by searching in a local grid cen-
tered at the point. We projected the displacement so as to pro-
duce a shape conforming to the shape model as in Ref. 18. In
Figs. 7(b) and 7(c) we show two iterations of the algorithm. We
increased local resolution at each iteration by reducing the width
between grid points. This procedure was applied to model both
global and local shape movements.

3.2.3 k-nearest neighbors

Each pixel ðpx; pyÞ in a signal void was represented by its offset
to each of the nine landmarks. Thus, each pixel in a signal void
was represented by a vector of nine features, each defined as

vi ¼ ðxi − px; yi − pyÞ; (3)

where ðxi; yiÞ are the coordinates of landmark i. For five patients
in the training set, we manually labeled 650 pixels belonging to
air-regions in all areas of the head (labeled þ1), and 210 pixels
belonging to artifacts (labeled −1) [Figs. 7(d) and 7(e)].

We trained our kNN for the optimal number K of neighbors
using five-fold cross validation on our 860-feature vectors for
each landmark, and found that K ¼ 5 gives the best separation
of classes.

Using kNN on the full set of feature vectors, we classified
pixels for the nine landmarks individually for each new patient,
and employed a majority vote on the result

result ¼
�
Air if

P
9
i¼1 kNNðviÞ > 0

Artifact otherwise;

where kNNðviÞ finds the label for a pixel in respect to the land-
mark ðxi; yiÞ using the distribution of offsets in the training set.
The resulting μ-map was denoted ASMkNN.

3.3 Combining Correction Methods

3.3.1 Postprocessing on partly filled signal voids

Following constraints were applied to handle artificial signal
voids connected to anatomical signal voids. Voids filled more
than a predefined threshold (80%) were considered artifact
voids, and were thus filled to 100%. Voids filled less than 10%
were considered as errors if the size of the filled area was less
than 0.5 mL. We applied this to all μ-maps and denoted the
resulting μ-maps with a _pp suffix.

We combined the two methods ASMkNN and Template by
applying a simple OR and an AND operation of the corrected
areas found by the two methods. The results were denoted
ASMkNN_pp_(or/and)_Template_pp. For type A arti-
facts we used the output of eCV as input to the correction meth-
ods ASMkNN and Template. This resulted in the μ-maps
eCV_ASMkNN and eCV_Template.

3.3.2 Reinsertion of actual air-regions

Due to possible artifacts created by eCV we wished to reinsert
the feasible air-regions. From the template-based correction
method we had a map of possible air-regions from 30 patients
without dental artifacts [Fig. 6(a)]. To account for patient vari-
ability, we computed a binary mask of air-regions by setting a
voxel to air if at least one-third of the training data indicated air.
By aligning this map to the μ-maps, we obtained an estimate of
possible air-regions. We reinserted air in the voxels filled by
eCV that overlapped with the mask. Figure 9 illustrates this

Fig. 8 Flowchart of the ASMkNN method.

Fig. 9 Effect of the air correction algorithm: (a) ground truth μ-map, (b) μ-map with Artifact 1 inserted.
Notice the artifact has connected the background to the left maxillary sinus in the image. (c) Result of eCV
where the artifact has been filled, including a large part of the sinus, and (d) result of eCV_ASMkNN_air
which has reinserted an estimation of the sinus.
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for a patient with artifact 1. The artifact μ-map is shown in (b),
and the resulting μ-map after eCV is shown in (c). By comparing
to the original shown in (a), it is clear that the artifact is con-
nected to the patient’s right sinus, and the correction method
has therefore filled parts of it. The mask of likely air-regions
reinserts air in filled regions that it overlaps with, as shown
in (d). The new μ-maps are denoted eCV_ASMkNN_air and
eCV_Template_air.

A flowchart of the combination of all the methods and their
interplay is illustrated in Fig. 10.

3.4 Quality Measures

As in Ref. 22, we assume that improved μ-maps lead to better
PET image quality. Therefore, our method was applied to patients
with simulated artifacts, and evaluated by measuring the devia-
tions from the ground truth μ-maps without the artifacts. For
each of the corrected μ-maps (Fig. 10), we computed the
precision ¼ tp∕ðtpþ fpÞ, recall ¼ tp∕ðtpþ fnÞ, and their har-
monic mean F1 ¼ 2 · precision × recall∕ðprecisionþ recallÞ,
used to test the accuracy, where tp, fp, and fn are the number
of true positive, false positive, and false negative voxels identified
using the ground truth and the segmented μ-maps.

4 Results

4.1 Type A Artifacts

We now present the results for each of the four artifacts; see
Fig. 2 for reference.

4.1.1 Artifact 1 [Fig. 2(a)]

Figure 11 illustrates the results for a patient with artifact 1,
where (a) shows a volume rendering illustrating the surface
recovery, as well as the overestimated areas, such as the
nose. Figure 2(b) shows the attenuation maps used to recon-
struct the PET images in (c). Notice the similarity of the
left and right image in each, compared to the middle image.
A relative difference plot of the PET images reconstructed
with the original μ-map without artifacts versus artifact 1
and the eCV_ASMkNN_air_pp μ-map, respectively, is
shown in Fig. 11(d). Notice the substantial differences in
the left image inside as well as outside the dental region.
These differences have been corrected by the proposed
approach. The only remaining differences are relatively

insignificant (<10%) at the bottom of the chin and at the
edge of air regions within the mouth caused by local overesti-
mation of the contour. This overestimation can be observed
when comparing the left and right volume-rendered surfaces
in Fig. 11(a).

The best correction method for artifact 1 was eCV_
ASMkNN_air_pp (Table 2). By using this method we filled
96% of the artifact volumes with a precision of 0.74, where
1 indicated no false positives and 0 indicated only false posi-
tives. Parts of the sinuses as well as voxels outside the volume
and around the nose were incorrectly filled. Comparing eCVand
eCV_ASMkNN_air_pp with the original μ-map, we could
measure to which degree the air-regions are recovered in the cor-
rection method. The average volume of the air-regions across all
patients was 36 mL. Using eCV we filled an average of 9.5 mL
in the air-regions, which was limited to 5.3 mL when using
eCV_ASMkNN_air_pp.

4.1.2 Artifact 2 [Fig. 2(b)]

The method eCV_ASMkNN_air_pp succeeded in correcting
92% of the artifact volume for patients with artifact 2, but
with a relative low-precision score of only 0.34.

4.2 Type B Artifacts

4.2.1 Artifact 3 [Fig. 2(c)]

All proposedmethodswere able to correct the entire artifact area in
all patients with artifact 3. The highest precision (0.95) was
achieved with the method ASMkNN_pp_and_Template_pp.
The method incorrectly filled part of the maxillary sinuses in
two patients.

4.2.2 Artifact 4 [Fig. 2(d)]

For artifact 4 the method Template_pp had the highest
recall score, but when looking at the F1-score, which is a
combination of precision and recall, the method ASMkNN_
pp_and_Template_pp again achieved the best score
(0.96).

The correction method eCV was not applied to the type B
artifacts in these results as it was meant for surface breaching
artifacts only. Applying the method to the ground truth μ-
maps of the 25 patients resulted in an incorrectly filled volume
of 5.3� 5.9mL mainly located at the nose. The error is similar

Fig. 10 Flowchart of methods. From left: the four input image types used in the methods, the type A
correction step, the type B correction steps. The latter is composed of four separate steps used in
a feed-forward sequence. Each of the methods is evaluated separately.
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to the overestimations observed when correcting the type A
artifacts.

5 Discussion
Ignoring metal implant-induced artifacts results in the PET
images being biased, a problem previously reported by several
authors.5,7 No satisfactory solution is available today.9 Existing
methods do not address dental area specifically, and methods
based solely on a mapping from MR data4,23,24 will fail since
the MR signal is corrupted in areas with susceptibility artifacts.
Atlas-based methods depend on a robust nonlinear registration
in order to correct the artifacts breaching the anatomical surface,
and furthermore, the registration is challenged by the lack of MR
signal at the contour we wish to find. This study proposes a new
fully automatic approach for correcting artifacts caused by den-
tal implants, which combines the use of existing, modified, and
new algorithms. Our approach successfully corrects the attenu-
ation maps over the dental area in patients without extreme
abnormal anatomy.

5.1 Type A Artifacts Breaching the Anatomical
Surface

The contour delineation method uses the readily available NAC-
PET image since this type of image usually has high photon
counts at the borders of the image, making the edge visible
even when using tracers with limited uptake outside the
brain. The method would not work with area-specific tracers
without uptake at the edges; however, such tracers are not
yet commonly used.

The method introduces a bias at the nose where the amount
of noise is high. The effect of this error is negligible in the PET
images after AC in areas outside the nose (<1%), but is larger in
areas close to the nose. The incorrectly inserted volume had an
average size similar to a type B artifact. The precision score is
highly influenced by the size of the original artifact. This is
the reason for the large differences between precision scores
of artifact 1 and 2. There is always a tradeoff between over-
or under-correcting the artifact. As an example, we increased the
amount of erosion performed by the postprocessing method on

Fig. 11 Effect of artifact 1 and the correction method. Relative difference images only showed for voxels
with SUV >0.5 in the original AC-PET: (a)–(c) the original μ-map, (d), (e) the simulated artifact 1, and (f),
(g) the corrected one using eCV_ASMkNN_air_pp.
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eCV_ASMkNN_air_pp. This increased the precision score of
artifact 1 from 0.74 to 0.94, and of artifact 2 from 0.34 to 0.83,
but resulted in a recall score of 0.8 (compared to 0.96) for arti-
fact 1, and 0.73 (compared to 0.92) for artifact 2. In this study,
we preferred to correct the artifact fully and thereby erroneously
overestimate the contour in areas that do not affect the PET
images.

The automatic parameter selection appears robust. The
lookup table, which converts the artifact size to actual

parameters, has proved successful in our validation.
Regularizing the parameters keeps the contour relatively smooth
between slices.

5.2 Type B Artifacts Within the Anatomical Surface

For the differentiation between air-regions and artifacts within
the body, we propose a combination of two methods. A template
approach with a map of possible air-regions, similar to Ref. 4,
and a method built on ASM and kNN.

Our template method offers improvements over Ref. 4 by
handling artifacts that are connected to the anatomical air-
regions. The accuracy of the method relies on the performance
of the affine alignment to the template. The precision of the
method is reduced with inaccurate alignment.

To reduce the effect of inaccurate alignment, we propose to
represent the potential artifact area by using ASM and kNN. The
landmarks are placed in the anatomical T1-weighted MR image
typically acquired in the head/neck and brain imaging protocols.
The landmarks are placed on the midsagittal slice on the T1w
images, since they include the largest section of dental area. It is
sufficient to represent the landmarks in two-dimensional (2-D).
We tested the method using two additional landmarks placed in
each of the pupils, making it a 3-D shape. This extension did not
improve the result of the classifier over the presented results
using a 2-D shape. The method is able to approximate land-
marks placed in signal voids, due to the robustness of ASM.
Due to the majority vote after kNN, the classification is robust
to some landmark misalignment.

The method incorrectly filled the bottom part of the sinus in
two patients. This was due to the initialization of the mean shape
being placed too far from the final position. A larger training set
and better alignment of the T1w images would be beneficial.

5.3 Combination of Methods

The reinsertion of air-regions is only an approximation since
real borders of the air-region are occluded by the artifact.
The number of incorrectly filled voxels was reduced by a factor
2 when using the hole correction method. The misclassified area
in the air-regions (5.3 mL) is negligible compared to the original
artifact size (artifact 1 mean: 228 mL).

The method ASMkNN had significantly lower precision
compared to Template before postprocessing. This is due
to resolution differences between the μ-map and the T1w
image, which is compensated for by the postprocessing step
investigating partly filled signal voids (Template_pp and
ASMkNN_pp). Resolution differences are not an issue in the
Template method as the μ-map and the DIXON-water image
share the same resolution.

Separately, ASMkNN_pp had better or similar F1-scores
compared to Template_pp, thus using the intersection of
the two further lowered the number of false positives, as
expected.

Specialized multispectral MR sequences for imaging near
metal, such as UTE-MAVRIC sequences,25 help improve the
overall quality of the MR images. However, artifacts remain
in metal, and the performance of multispectral sequences in
the context of AC has not been studied on a larger patient cohort.
In an eight patient study by Ref. 26, the authors develop a
segmentation-based method using intensity thresholding on a
high-resolution MAVRIC sequence applied in the oral area.
Even though the authors present a significant decrease in artifact

Table 2 Precision (P), Recall (R), and F1-score (F 1) results for each
correction method and all artifacts, averaged across the 25 patients.

Correction P R F 1

Artifact 1 (228 mL type A artifact)

eCV 0.71 0.96 0.82

eCV_ASMkNN 0.70 0.97 0.81

eCV_ASMkNN_air 0.71 0.96 0.82

eCV_ASMkNN_air_pp 0.74 0.96 0.84

eCV_Template 0.71 0.98 0.82

eCV_Template_air 0.72 0.96 0.83

eCV_Template_air_pp 0.73 0.96 0.83

Artifact 2 (25 mL type A artifact)

eCV 0.29 0.84 0.43

eCV_ASMkNN 0.28 0.94 0.43

eCV_ASMkNN_air 0.28 0.93 0.44

eCV_ASMkNN_air_pp 0.34 0.92 0.50

eCV_Template 0.31 0.93 0.46

eCV_Template_air 0.31 0.93 0.46

eCV_Template_air_pp 0.31 0.93 0.47

Artifact 3 (4 mL type B artifact)

ASMkNN 0.44 1.0 0.61

ASMkNN_pp 0.91 1.0 0.95

Template 0.86 1.0 0.92

Template_pp 0.87 1.0 0.93

ASMkNN_pp_and_Template_pp 0.95 1.0 0.97

ASMkNN_pp_or_Template_pp 0.84 1.0 0.91

Artifact 4 (11 mL type B artifact)

ASMkNN 0.62 0.96 0.75

ASMkNN_pp 0.95 0.96 0.96

Template 0.91 1.0 0.95

Template_pp 0.92 1.0 0.96

ASMkNN_pp_and_Template_pp 0.96 0.96 0.96

ASMkNN_pp_or_Template_pp 0.91 1.0 0.95
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size, parts of the artifacts still remain. Our method could still be
applied after such multispectral sequences for further correction.

The method does not require prior knowledge about the type
of artifact (A or B), nor the possible presence of an artifact. The
method runs both correction methods on all patients. Running
the method on a patient without artifacts would only result in
changes to the PET image that are similar to the bias introduced
by this method (<1% outside the nose). In a clinical setup, the
correction method should therefore run on all patients after the
acquisition of the DIXON attenuation map and the emission
data, but prior to reconstruction of the emission data with the
attenuation map. An offline reconstruction is also possible if
access to modification of the clinical protocols is not available.

This study used simulated artifacts superimposed on patients
without dental artifacts. This means no true signal void in the
MR-images Dixon-water and T1w exists, which is obviously an
advantage for the registration steps used in our method. The fre-
quency of the artifacts, and the performance of the method
applied to patients with real artifacts, was assessed in a separate
study.14 Here, we found that out of 339 patients inspected, 148
had dental artifacts of varying sizes. The method proposed
here was applied to correct for the artifacts, and after manual
inspection of each patient we found that the artifacts had been
corrected. The use of artificial voids in this study allowed us to
quantify the improvement, something that is not possible when
using real patient data.

The method was developed and evaluated using Dixon
images, where artifacts tend to pose the greatest challenge
for the method, but is not limited to correction of dental artifacts
in the Dixon μ-map. Since it has been shown that the method
performs well here, it will also perform well using different AC
maps with smaller artifacts. Directly substituting the Dixon
maps with ones derived from ultrashort echo time (UTE)
sequences,27 or any other attenuation map, is possible without
modifying the method, as a mask is created during the method,
from all tissue values above the LAC representing air.

6 Conclusion
We addressed the previously unsolved problem of correcting for
metallic dental implant induced signal voids in PET/MR with a
fully automatic approach. The approach solves the problem with
high accuracy as shown both visually and quantitatively in our
evaluation on 4 × 25 patients. The approach uses only images
available in all PET/MR head/neck and brain imaging protocols,
and is therefore applicable to all patients who do not have abnor-
mal anatomy.
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