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Abstract. Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks
of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination;
however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based
on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of
collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in
vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed
human ex vivo liver samples as phantoms that mimic the textural contrast of in vivoGd-MRI. We have developed
a local texture analysis that is applied to phantom images, and the results are used to train model observers to
detect HF. The performance of the observer is assessed with the area-under-the-receiver–operator-character-
istic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with
multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen
as optimal for the task of detecting HF. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Chronic liver disease (CLD) is a widespread health concern that
represents a common disease pathway for a number of important
etiologies, including nonalcoholic steatohepatitis (NASH), alco-
holic cirrhosis, and viral hepatitis.1,2 These diseases lead to
inflammation and damage, usually first involving the portal
triad region surrounding the hepatic lobules, resulting in the
deposition of collagen scar tissue in the extracellular matrix
(ECM), a process diagnosed as hepatic fibrosis (HF).1,3–5 HF is
the hallmark of CLD.2,6–8 Monitoring for the presence of HF and
staging (quantifying) the severity and progression over time are
essential for the diagnosis and therapeutic management of CLD.

The current reference standard for CLD diagnosis and HF
staging is needle biopsy of the liver.6,9–11 Biopsy provides
cellular-resolution images that make it possible for a pathologist
to identify fibrotic tissue and stage severity. When providing
a diagnosis of HF, a pathologist will report severity using a
numerical staging system based on one of several alternative
scoring methods. Two of these techniques are the “Ishak score,”
using a seven-point scale, and the “METAVIR score,” which
uses a five-point severity scale.3,9 Each scale has metrics for
determining the severity of HF and each institution or medical
organization adopts a particular scale.

Needle biopsy can provide diagnostic specificity for HF, but
the technique suffers from multiple drawbacks.2,8,10,12,13 The
sample recovered in needle biopsy is ∼1 mm3 and is used to

determine the health of an organ ∼50;000 times larger than
the sample’s volume; CLD is a nonuniform disease affecting
different regions to different degrees, making biopsies prone
to volume sampling errors. Additionally, pathologists require
extensive training to make a quantitative assessment of HF, and
there is a significant variance between scores,6,9,10,14,15 either
between pathologists within the same center or between centers,
which may be aggravated when different scales are used. There
is also risk for the patient, who must undergo an invasive pro-
cedure that has potential complications, including pain, bleed-
ing, and/or infection.

HF caused by CLD can be treated with therapies that delay
progression or reverse damage to the liver; therapy is most effec-
tive if HF is diagnosed in early-stage disease. Change of lifestyle
is effective at delaying or preventing progression of CLD in the
cases of alcoholic liver disease and NASH.16–18 There are also
antiviral treatments for viral hepatitis.19,20 The capacity to pro-
vide a quantitative, whole liver, noninvasive MRI surrogate
measure for HF would be of pivotal impact to the diagnosis,
management, and further development of improvements in new
therapies.

As mentioned, the METAVIR score is a method to stage HF
from needle biopsy.9 It has also been suggested as a reference
scale for studies that use MRI techniques to stage HF. The
METAVIR score is based on a five-point scale ranging from F0
to F4. F0 corresponds to a healthy liver with no detectable HF.
F1 is diagnosed when collagen has formed around the portal
triads, the veins that supply blood to the hepatocytes that per-
form the primary function of removing toxins from the blood;
F2 is based on identifying HF extending from the portal triads
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with fibrosis branching out between the triads; F3 stage is based
upon identifying fibrosis bridging across portal triads; and F4,
also referred to as cirrhosis, is called when thickened fibrotic
bands both bridge triads and encase liver lobules.

Magnetic-resonance elastography (MRe)13,21–24 is another
MRI method that has been developed for HF detection and stag-
ing. MRe utilizes an externally triggered transducer that produ-
ces mechanical, pneumatically driven, longitudinal pressure
distortion waves on the surface of the patient’s body that transfer
to the liver.21,22,25,26 Deformation in response to the pressure
waves is spatially and temporally measured using a phase-sen-
sitive MRI technique, allowing conversion to a measure of liver
tissue stiffness.21,24,27–29 Liver stiffness has been shown to cor-
relate with the presence of HF.13,24,27,30–32 Limitations of MRe
include the requirement for specialized equipment, additional
time in the MR scanner, potential patient discomfort, and that
MRe is relatively insensitive to early stages of HF,23,27,29 ≤F2
disease. Our goal is to develop a quantitative MR imaging tech-
nique directly sensitive to the textural changes the pathologist is
observing, but with the advantages of being noninvasive, fast,
requiring only standard MRI systems, and with the capacity
to provide whole-liver sampling.

Gadolinium (Gd) contrast agent (gadobenate dimeglumine)
has previously been shown to accumulate in the extracellular
space where collagen has emerged in the liver, providing con-
trast between healthy and fibrotic tissue.2,6 Gadolinium reduces
the T1 and T2 wherever it accumulates. The effect on T1 is
much greater than on T2, making gadolinium an effective in vivo
T1-imaging contrast agent.33 In vivo images suitable for the
detection of HF are collected with a T1-weighted MRI pulse
sequence at the delayed phase of Gd-enhancement. The spatial
resolution achievable in images acquired by clinical MRI is very
near the scale of the characteristic size of the hepatic lobule and
larger HF bands. However, the images are challenging to ana-
lyze reproducibly and quantitatively by unaided radiologists.

Since statistics of the data are not known, we chose to assume
the data obey normal statistics, and use a Hotelling observer to
assess local texture in formalin-fixed liver samples obtained at
autopsy using MR images. Data were collected with a 3-D
gradient-echo pulse sequence using a TR/TE/NA of 9.79 ms∕
4.44 ms∕2. These settings were chosen, based on results outlined

in Section 2.1, to recreate the contrast observed in vivo in Gd-
enhanced images that radiologists read to assess HF.

In clinical MRI, the operator has control over the TR, TE,
and flip angle, and receives radiologist feedback to confirm if
the sequence is collecting images with diagnostically acceptable
contrast. The image sequence used is not necessarily ideal for
performing the task of separating images of F0 and F4 liver
images with a mathematical observer. Our goal is to use task-
based performance assessment using a linear ideal (Hotelling)
observer to determine the optimal parameters for maximizing
sensitivity to fibrotic structures in MR imaging.

The TR, TE, and flip angle parameters directly contribute to
the contrast of an MR image. However, TR and TE also directly
impact the scan time of the image sequence. Increasing the dura-
tion of the MR acquisition in the abdomen is not desirable due to
increased artifacts from motion associated with the patient’s
breathing. Changing the flip angle has a similar effect on overall
contrast without significantly impacting the length of the
sequence. For this reason, we focus on determining the ideal flip
angle for an MR sequence that will be used to assess HF.

We use area-under-the-receiver–operator-characteristic curve
(AUROC) as the figure-of-merit, and present results of a study to
find the optimal flip angle for detecting HF in liver phantoms.
This optimization method is translatable to the clinical setting.

2 Materials and Methods

2.1 Liver Phantoms

Liver specimens were recovered from the University of
Arizona’s Department of Pathology for use as MRI phantoms.
One- to two-inch thick slices were sectioned during autopsy and
fixed in formalin. After the liver was fixed in formalin, biopsies
were collected and the phantom placed in an air-tight container.
The containers were then placed in the MRI to collect images.

To confirm our observation that MRI of formalin-fixed tissue
is comparable to clinical contrast-enhanced MRI, we compared
the textures of the liver tissues using a technique introduced by
Burgess et al. The method takes the Fourier transform of the data
and measures the radially averaged power spectra in frequency
space. The results are reported on a log–log scale to determine
the slope of the power spectra. Imaging modalities with similar

Fig. 1 (a) Log of the average power spectra �2σ of in vivo and (b) ex vivo healthy and diseased liver
tissue, plotted against a log frequency scale with �2σ.
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slopes in the spectral density have similar image features.34,35

We compared healthy and cirrhotic patient data to healthy
and cirrhotic phantom images. Patient data were collected at
a TR/TE/FA of 4.36 ms∕2.3 ms∕10 deg and phantom data
were collected at a TR/TE/FA of 9.79 ms∕4.44 ms∕10 deg.
All data sets were collected with resolutions of 1.5 mm2 in-
plane resolution at a slice thickness of 3 mm. Results for this
experiment are shown in Fig. 1. All of the collected spectra
exhibited similar slopes to within experimental error. With this
result, we conclude that the formalin-fixed tissue produces
images with textures similar to in vivo clinical images of fibro-
sis. Higher-resolution in vivo experiments are not yet possible
due to the limitations of patient respiratory motion.

2.2 Magnetic Resonance Imaging

All images in this optimization study were collected on a
Siemens 3T Skyra MRI using the Siemens flex body imaging
coil using a 3-D gradient-echo T1-weighted imaging sequence
(3-D VIBE, Siemens) with TR∕TE ¼ 9.79 ms∕4.44 ms, 2
averages, and a range of FAs from ∼10 to ∼50 deg. The FAs
available are based on hardware limitations. A field-of-view
(FOV) of 26.5 × 26.2 × 3.36 cm with a sampling matrix of
768 × 760 × 96 was selected, resulting in images with isotropic
resolution of 0.35 mm3. All images were collected at room tem-
perature (22°C). The total scan time at one FAwas ∼25 min. We
collected enough data to fully train the covariance matrices
required to calculate the Hotelling observer. This MRI optimi-
zation method will eventually be repeated with in vivo data sets
once enough patient images are collected.

Before the mathematical observer was trained to perform the
task of HF-detection on liver tissue, a basic threshold was imple-
mented to segment out and remove areas of the image that
contained blood vessels from the analysis. We found this to be
a necessary step in developing the observer technique.

2.3 Biopsy

Tissue biopsy was used as the gold standard to determine the
METAVIR score for the phantoms prior to imaging. Eight
scalpel biopsies of 10 × 10 × 1 mm3 size were collected from
each formalin-fixed liver. Large biopsies were possible since
the tissue was excised from autopsy. H&E stained slides were

Fig. 3 Representative slice images of (a) F0, (B) F1, (c) and (D) F4
phantoms at a 19-deg flip angle. Image resolution is 0.35 mm3

isotropic.

Fig. 2 Biopsy-slide images for all four phantoms. (a) Assessed as an F0 (healthy) liver, (b) F1 (early
indications of fibrosis), (c) and (d) both diagnosed as F4 (cirrhotic) livers.
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prepared for review by a pathologist, who evaluated each sample
for the stage of fibrosis. Only phantoms with consistent
METAVIR scores were selected to train and test the observers.

2.4 Local Texture Analysis

We tested texture analyses based on a local, normalized, 2-D
discrete autocorrelation (2DAC) and a local, normalized, 2-D
discrete circular autocorrelation (2DCC). We found that a
Hotelling observer working with 2DCC is capable of distin-
guishing whether local regions drawn from an F0∕F1 or an F4
liver while requiring a modest amount of training data. The
2DCC is given by
EQ-TARGET;temp:intralink-;e001;63;612

S 0
k;l ¼

XM
m¼1

XN
n¼1

fðm; nÞf�½σðm − kþMÞ;

σðn − lþ NÞ� 1 ≤ k ≤ M

1 ≤ l ≤ N
;

Sk;l ¼
S 0
k;l

~S 0
max

; (1)

where σ is the modulo function that represents a circular shift of
the conjugate vector.M and N are set to the ROI size; both were 7

in this experiment to encompass a little more than one typical
ECM cell. The final vector is normalized a maximum value of one.
The results of the 2DCC on many 7 × 7 pixel regions of interest
(ROIs) were the data used to train the optimal linear observer.
Training ROI’s were nonoverlapping and included no major blood
vessels as a result of the threshold mask. The symmetries of the
2DCC ensured that the observer had no orientational dependence.

2.5 Optimal Linear Observer

To perform the classification task between a signal-absent class
corresponding to normal liver, and a signal-present class corre-
sponding to fibrotic liver, an optimal linear observer that maxi-
mizes detection signal-to-noise ratio (SNR), also known as the
Hotelling observer, was trained using local 2DCCs from 2-D slices
from MR images of phantoms with METAVIR scores confirmed
via biopsy. The set of pixels from the texture analysis were ordered
as a P × 1 vector.36,37 The optimal linear observer template, is also
a P × 1 vector and a test statistic is calculated as an inner
product between a data vector and the observer vector36,37

EQ-TARGET;temp:intralink-;e002;326;540τð~gÞ ¼
XP
p¼1

wpgp ¼ ~wt~g: (2)

The Hotelling observer is given by36,37

Fig. 4 Average template �σ variation between different training and testing data combinations for each
acquired flip angle.
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EQ-TARGET;temp:intralink-;e003;63;368~w ¼
�
K1 þK0

2

�
−1
ðg1!− g0

!Þ; (3)

whereKj is the covariance matrix of the training data from class j
and ḡ1 is the corresponding mean data. The Hotelling observer is
the ideal linear observer when the data vectors are described by
multivariate normal statistics and the covariance matrices of the
data in each class are equal or approximately equal.

The recovered test statistic τðgÞ is used to make a decision
based on a threshold. If τðgÞ is greater than τth then it is decided
that H1 is true, whereas if τðgÞ is less than τth, H0 is true.37

2.6 Ideal Quadratic Observer

The Hotelling observer is the ideal observer only when
K0 ≅ K1. However, if the statistics are multivariate normal but
the covariance matrices are not equal or nearly equal, then the
quadratic observer is the ideal observer. It is given by

EQ-TARGET;temp:intralink-;e004;63;170τð~gÞ ¼ 1

2
ð~g − g0

!ÞtK−1
0 ð~g − g0

!Þ − 1

2
ð~g − g1

!ÞtK−1
1 ð~g − g1

!Þ:
(4)

The ideal quadratic observer can be computed with the same
data required to train the linear observer.38 Decisions are made in
the same manner as for the linear observer, using a comparison
of τð~gÞ to tth to decide if ~g is a member of H0 or H1.

2.7 Receiver Operator Characteristic Analysis

We recovered the receiver–operator-characteristic (ROC) curves
and calculated the AUROC as the figure-of-merit for the
observer. To perform ROC analysis, τth was varied across the
range of possible τ values spanned by the test statistics τ0 and
τ1. τ0 is the test statistics from confirmed signal-absent testing
data and τ1 is the test statistics from confirmed signal-present
testing data. At each threshold τth, the false-positive fraction
(FPF) and true-positive fraction (TPF) were calculated37 using

EQ-TARGET;temp:intralink-;e005;326;262FPF ¼ 1 −
P

τ0 < τthP
τ0

; (5)

and

EQ-TARGET;temp:intralink-;e006;326;218TPF ¼
P

τ1 > τthP
τ1

; (6)

P
τi denotes the total number of test statistics and

P
τið> k <Þτth

denotes the number of scalar test statistics either above or below
the threshold.

For each threshold, the TPF was plotted as a function of the
FPF, forming the ROC curve. The figure-of-merit for the ROC
curve is the AUROC, which has a possible range from 0.5 to 1.0.
An AUROC of 0.5 denotes a situation where the distribution of
test statistics fully overlap one another and the observer can do
no better than random guessing. An AUROC (or AUC for short)
of 1.0 means a complete separation of the test-statistic distribu-
tions and perfect observer performance.

Fig. 5 2-D representation of the templates for each acquired flip angle.
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2.8 Curve Fitting

To determine the optimal FA, the AUC was plotted as a function
of FA, AðθÞ. A smoothing spline was implemented to interpolate
the AUC data using the MATLAB® smoothing toolbox.
The optimal FA was selected at the maximum of the spline
curve.

3 Results

3.1 Liver Phantoms and Biopsy

We collected biopsies from four liver phantoms fixed in for-
malin for imaging with MRI. Each phantom had biopsies from
eight regions assessed by a pathologist. Only phantoms with

Fig. 6 (a)–(e) The sample covariance matrices for a representative set of training data at each flip angle.

Journal of Medical Imaging 035502-6 Jul–Sep 2016 • Vol. 3(3)

Brand et al.: Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver



homogeneous biopsy results were used in this study. Two
phantoms were reported as F4, one as F0, and one as F1.
Representative images of biopsy slides are provided for each
phantom in Fig. 2.

The F0 sample showed no sign of fibrosis, whereas the F1
biopsy showed early fibrosis forming around the portal veins.
The two F4 phantoms have a complete ECM and lobules
were clearly visible in the biopsy slides. The F0 and F1 livers
were used to define the signal-absent class of the linear and
quadratic observers and the two F4 livers define the signal-
present class to train the model observers. Figure 3 provides a
representative MRI of the phantoms at TR/TE 9.79 ms∕4.44 ms
at FA 19 deg associated with each biopsy sample.

3.2 MRI of Liver Phantoms

Each phantom was imaged at five flip angles: 8, 15, 19, 30, and
45 deg in order. Selected slices from each phantom at 19 deg are
shown in Fig. 3.

The images from the F0 and F1 phantoms appear relatively
untextured and the liver tissue appears uniform in signal
throughout a majority of the tissue. The F1 liver in Fig. 3(b)
has some features associated with vasculature. This is dependent
on the location the slice is removed from during autopsy. The
vasculature features, which are dark, are ignored by our analysis.
The F4 images suggest that there is visible contrast between the
ECM and liver tissue in the cirrhotic livers that appears at the
expected length scale associated with fibrosis.

3.3 Training Model Observers

The set of local 2DCCs from the F0 and F1 phantoms comprised
our signal-absent data for training a model observer and the
2DCCs from the two F4 phantoms comprised the signal present
data. To avoid bias in the results, only one phantom was used to
train the model observer; the other phantom was selected as the
testing data. With four phantoms, two in each class, we could
derive and test 4 independent observers to check for reproduc-
ibility. 7 × 7 pixel ROIs were selected with independent gridd-
ing to calculate the means and covariance matrices. With this
selection method, the liver in Fig. 3(a) had 248,439 ROIs,
the liver in Fig. 3(b) had 56,865 ROIs, the liver in Fig. 3(c)
had 49,858 ROIs, and the liver in Fig. 3(d) had 127,150
ROIs. The linear observers for each FA are shown in flattened
1-D form of length P in Fig. 4, based notation in Eq. (5). The
observer index is the vector component. We find that the tem-
plates all detect the same features, regardless of choice of train-
ing and testing data and FA—namely the peaks in the 2DCC
function associated with the ECM cell size. Figure 5 provides
the 2-D representation M × N of the templates at each FA for
one set of training data, based on indexing in Eq. (1). The 2-D
templates show a high degree of rotational symmetry, as
expected for 2DCCs, which make the results invariant to
image rotation.

The Hotelling observer has a template form w
⇀
that one can

visualize, whereas the quadratic observer does not. The sample
covariance matrices for each flip angle for a representative sig-
nal-absent and signal-present training combination are shown
in Fig. 6.

3.4 ROC Analysis and Curve Fitting

The four phantoms allowed for four different combinations
of training and testing data, for which ROC analysis was

performed and the AUC for each combination was calculated
as a function of flip angle. ROIs were selected with a sliding
window to increase sensitivity to local changes in texture; the
liver in Fig. 3(a) had 7,686,034 ROIs, the liver in Fig. 3(b)
had 2,952,176 ROIs, the liver in Fig. 3(c) had 2,503,899 ROIs,
and the liver in Fig. 3(d) had 6,053,726 ROIs. The AUC values
are plotted as a function of flip angle in Fig. 7.

The mean relative AUCs, after a minimal least squares
adjustment to remove overall offsets between training and test-
ing combinations, were computed as a function of flip angle, and
plotted for the linear and quadratic observers in Figs. 8 and 9,
respectively. The optimal flip angle was chosen based on maxi-
mizing the AUC and for both the linear and quadratic observers
was found to be near 24 deg. The AUC values for the quadratic
observer did not improve upon the AUC values of the linear
observer.

Fig. 7 AUC as a function of flip angle for the four independent combi-
nations of training and testing data.

Fig. 8 Plot of the relative AUC for a linear observer as a function of flip
angle.
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4 Conclusions and Future Work
Task-based optimization of MRI acquisition sequence parame-
ters can be carried out whenever a model observer is applied to
the MRI images, and this method should have extensive utility
for a variety of clinical applications.

The method of optimization shown in this work was focused
on phantoms, but the approach can be translated to clinical prac-
tice. Similar studies are planned that use data collected from
in vivo scans and will thus be useful for improving patient
sequences. The optimal flip angle determined for ex vivo phan-
toms at our resolution is not necessarily the optimal flip angle
for the in vivo experiments.

Additionally, more moderate cases of HF will be collected to
establish the AUCs for early detection. This will have the chal-
lenge of identifying intermediate cases, i.e., F1, F2, and F3, with
gold standard verification. We expect to extend our techniques
to repeat the optimization experiment for best multiple-class
decisions.

We are acquiring more phantom data with early stage liver
disease to further develop this tool, but this is difficult due to
limited access to autopsy tissue samples. Even though only a
limited number of phantoms were used in the current work,
we were able to collect enough training data to calculate the
required covariance matrices and test the Hotelling template.
We are also considering alternatives to the 2DCC for local tex-
ture analysis.
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