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Abstract. Segmentation of skin lesions is an important step in computer-aided diagnosis of melanoma; it is also
a very challenging task due to fuzzy lesion boundaries and heterogeneous lesion textures. We present a fully
automatic method for skin lesion segmentation based on deep fully convolutional networks (FCNs). We inves-
tigate a shallow encoding network to model clinically valuable prior knowledge, in which spatial filters simulating
simple cell receptive fields function in the primary visual cortex (V1) is considered. An effective fusing strategy
using skip connections and convolution operators is then leveraged to couple prior knowledge encoded via
shallow network with hierarchical data-driven features learned from the FCNs for detailed segmentation of the
skin lesions. To our best knowledge, this is the first time the domain-specific hand craft features have been built
into a deep network trained in an end-to-end manner for skin lesion segmentation. The method has been evalu-
ated on both ISBI 2016 and ISBI 2017 skin lesion challenge datasets. We provide comparative evidence to
demonstrate that our newly designed network can gain accuracy for lesion segmentation by coupling the prior
knowledge encoded by the shallow network with the deep FCNs. Our method is robust without the need for data
augmentation or comprehensive parameter tuning, and the experimental results show great promise of the
method with effective model generalization compared to other state-of-the-art-methods. © 2019 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.024001]
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1 Introduction
Maligant melanoma is one of the most aggressive and life-
threatening skin cancers in the world and can strike men and
women of all ages, races, and skin types.1,2 The annual incidence
has increased dramatically over the past few years, with the
estimated of 132,000 melanoma skin cancer occur globally
each year, according to Skin Cancer Foundation statistics.3

Melanoma has different stages ranging from 1 to 3. Early diag-
nosis and treatment of melanoma is of critical clinical impor-
tance for high survival rate, e.g., early stage melanomas can
often be cured with surgical excision.1

Dermoscopy is commonly used to diagnose skin cancer. A
dermoscope is a noninvasive handheld skin imaging device that
uses optical magnification and cross-polarized lighting to aid
dermatologists in examining diagnostic details under the skin
surface.4 Manual interpretation of dermoscopic images is sub-
jective depending on the experience of the dermatologists.
There is a large amount of variation in assessing the probabilities
of incidence and the malignancy level of the tissue. Hence, there
is a growing demand for efficient computer-aided skin lesion
analysis for early melanoma detection.

Standard approaches in computer-aided diagnosis (CAD) of
dermoscopic images consist of three steps: dermoscopic image
lesion segmentation, feature extraction, and disease classifica-
tion. Segmentation of skin lesions is an essential step for accu-
rate classification and diagnosis of the skin lesions. However,

despite much effort being devoted to skin lesion segmentation,
accurate delineation of skin lesions still remains an ongoing
challenge. Examples of several major difficulties are low con-
trast between the lesion and the surrounding skin (different
colourings inside the lesion), irregular and fuzzy lesion borders,
large amount of artifacts, and intrinsic cutaneous features such
as skin lines, blood vessels, air bubbles, hairs, and perspective
distortion

In this paper, we describe a fully automatic framework for
accurate skin lesion segmentation by coupling a deep fully con-
volutional network (FCN) with a shallow network with textons
derived from domain specific filter kernels.

2 Previous Work
Existing approaches in the literature for skin lesion segmenta-
tion can be roughly categorized into traditional histogram-based
thresholding, clustering, edge-based detection, region-based
detection, morphological detection, model-based, active con-
tours (snakes and their variants), and supervised learning-
based methods. Comprehensive surveys on skin lesion segmen-
tation in dermoscopic images are presented in Refs. 5–7. Celebi
et al.8 applied the ensemble of thresholding methods to segment
skin lesions in dermoscopic images. The results from threshold
fusion presented robust skin lesion segmentation. However, the
method may not perform well on images when large amounts of
artifacts appear (e.g., caused by hair or bubbles) as these can
alter the histogram significantly, which in turn may result in
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biased threshold computations. Barcelos and Pires9 employed an
anisotropic diffusion filter prior to Canny’s edge detector
to segment lesion edges. The results showed that most of the
unwanted edges were removed. However, some regions of
the skin lesions were missed. Cavalcanti et al.10 proposed
independent component analysis (ICA)-based active-contours
method for skin lesion segmentation. ICAwas first used to gen-
erate a reliable binary mask for initializing the active contour
model implemented using Chan–Vese.11 This is then followed
by morphological operations as a postprocessing step. More
recently, Bozorgtabar et al.12 exploited the contextual informa-
tion of skin image at the superpixel level and applied Laplacian
sparse coding to calculate the probabilities of the skin image
pixels to delineate lesion border, this is then followed by a
dynamic rule-based refinement. Multiscale superpixel with cel-
lular automata13 and delaunay triangulation14 have also been
applied for skin lesion segmentation with some degrees of suc-
cess. However, these methods may fail to accurately segment
some skin lesions, such as lesions that touch the image boundary
or with significant artifacts appearing in the images.

Recent advances in machine learning, especially in the area
of deep learning, such as convolutional neural networks
(CNNs), have dramatically improved the state-of-the-art in iden-
tifying, classifying, and quantifying underlying patterns in
medical images. In particular, exploiting hidden hierarchical
feature representations learned solely from data acts at the core
of the advances. A recent review of the successes of deep learn-
ing in application to medical image registration, segmentation,
computer-aided disease diagnosis, or prognosis, is presented in
Ref. 15. Mostly recently, much progress has also been achieved
by deep learning-based methods in automated skin lesion
segmentation.2,16,17

Bi et al.16 exploited FCN to automatically segment skin
lesions. To address the limitation of coarse segmentation boun-
daries produced by the original FCN due to the lack of label
refinement and consistency (especially for the skin lesions
that have blurry boundaries and/or low variance in the textures
between the foreground and the background), multistage FCN
was investigated to learn complementary visual characteristics
of the different skin lesions. Early stage FCNs learned coarse
appearance and localization information while late-stage FCNs
learned the subtle characteristics of the lesion boundaries. The
complementary information derived from individual segmenta-
tion stages was then combined to obtain the final segmentation
results. This method has demonstrated promising results on
ISBI 2016 skin lesion challenge dataset. Yu et al.17 improved
the segmentation performance via exploiting the CNN net
depth, in which a very deep CNNs (ResNet) was employed
to increase model capacity that provided promising segmenta-
tion. Yuan et al.2 presented a fully automatic method for skin
lesion segmentation using 19-layer deep FCNs. To handle the
strong imbalance between the number of foreground and back-
ground pixels, instead of using standard cross entropy-based
loss function, a loss function based on Jaccard distance was
designed to eliminate the need of sample reweighting that is
required for the cross entropy-based loss function.

Among these deep learning-based skin lesion segmentation
methods, many efforts have been made to focus on designing
FCN architectures with specific loss functions to achieve a better
performance. However, few attempts are taken to encode clinical
valuable prior-knowledge into deep learning architectures to
enable accurate segmentation of skin lesions. Toward this

direction, this paper aims to develop a general framework,
which allows the context information to be modeled and inte-
grated into a deep FCN for fully automated skin lesion segmen-
tation (Fig. 1), where an FCN is designed to fuse information
from the intermediate convolutional layers to the output through
skip connections and deconvolutional layers so that both low-
level appearance information and high-level semantic informa-
tion can be considered. In addition to the data-driven features
derived from the FCN, clinical prior-knowledge of the skin
lesions considering the low-level edge and texture features is
also taken into account. Those low-level edge and texture fea-
tures are derived from predefined filter kernels specific to skin
lesions using a shallow convolutional network, which is then
built into the FCN workflow using convolution operators.
The proposed network architecture is trained in an end-to-
end manner. In such a way, the domain-specific features can
be supplementary to other hierarchical and semantic features
learned from the FCN to enhance the fine details of skin lesions
for a more accurate segmentation.

Our main contributions are summarized below:

(1) We present a fully automatic framework for accurate
skin lesion segmentation by coupling a deep FCN
with a shallow network with textons derived from
domain specific filter kernels.

(2) We introduce a convolutional shallow network,
which allows the clinical prior knowledge (textures)
to be modeled and work with a deep FCN comple-
mentarily for skin lesion segmentations.

(3) We propose an efficient fusing strategy to combine
domain-specific hand-crafted texton features into a
deep network that is trained in an end-to-end manner.

(4) Our experimental results suggest that model generali-
zation capability can be improved by introducing
the context information into the FCN without the
need of data augmentation or comprehensive param-
eter tuning.

The reminder of this paper is organized as follows. We
describe the details of our method in Sec. 3. Experimental set-
tings and results are reported in Sec. 4, with further discussions
in Sec. 5. Conclusions are drawn in Sec. 6.

3 Method

3.1 Overview of the Proposed Method

The architecture of the proposed segmentation method is com-
posed of two networks: an FCN and a texton-based shallow net-
work. These two networks are integrated complementarily to
enable more accurate skin lesion segmentations. Figure 1 illus-
trates the overall framework of the method. Both data driven and
hand-crafted features are taken into account for the segmenta-
tion. More specifically, the hierarchical semantic features are
learned by the FCN, whereas the context information related
to the skin lesion boundaries is modeled by texton derived
from the shallow network. These two networks are then inte-
grated by fusing feature maps generated from each network
using convolution operators. These two networks interact
with each other in the learning stage that enables a more detailed
segmentation.
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In our method, the basis of feature learning process for both
networks is derived from the convolution operations. For the
deep network, the convolutional filter kernels are represented
by weights learned automatically from raw image data, whereas
the texton-based shallow network learns primitive elements by
manually designing filter kernels based on domain specific
knowledge (e.g., skin lesion boundaries and textures). The com-
bination of these two types of networks has two advantages: on
the one hand, some important cues derived from clinical prior-
knowledge or context information are emphasized during the
learning process; on the other hand, the automated weights
learning scheme designed in the FCN helps in optimizing the
hand-crafted feature map.

3.2 Fully Convolutional Network

The FCN architecture has been proven to be the state-of-the-art
for semantic segmentation, in which the segmentations are
obtained by a pixel-wised prediction. The FCN is trained via
mapping an input to its labeled ground truth in an end-to-end
supervised learning manner. In this paper, we train the FCN
to learn the hierarchical features using the architecture described
in Ref. 18. Figure 1 shows the FCN architecture with VGG16
(CNN classification net).19 The VGG16 architecture is used as a
base net in the FCN due to the following reasons: (1) more rep-
resentative features can be learned via a stack of two or three
convolutional layers with small filters (3 × 3), as it increases
the complexity of a nonlinear function; (2) the problem of
the limited number of training data can be tackled via transfer-
ring learning,20–22 namely the pretrained model learned from

abundant natural images can be used to train the FCN for
skin lesion segmentation; and (3) the deep 16 layers architecture
with a large number of weights could encode more complex
high-level semantic features.

The VGG16 net is composed of five stacks followed by three
transformed convolutional layers, where each block contains
several convolutional layers and pooling layers. The convolu-
tional layers can be viewed as filtering-based feature extractors.
The filter responses are generated from local receptive fields in
the feature maps of the previous layer by discrete convolution
operations, which are defined as

EQ-TARGET;temp:intralink-;e001;326;272Y ¼
XM

i¼1

Wl
iX

l−1
i þ bl; (1)

whereWl
i is the filter kernel in the current layer l, which includes

the weights. The input map Xl−1
i (i ¼ 1; : : : ;M) is the feature

map in the (l − 1)’th layer. The bl is the bias in the l’th
layer. The result of the local weighted sum is passed to an acti-
vation function fð:Þ. Study in Ref. 23 showed that the ReLU can
achieve better performance in terms of learning efficiency that
results in faster training of very deep neural networks compared
to the sigmoid method, we use the ReLU as an activation func-
tion in each convolutional layer. The pooling layer provides a
mechanism that retains the spatial invariance of the features.
However, it reduces the resolution of the feature maps.
Typical pooling operations include subsampling and maxpool-
ing. In our experiments, we employ the max-pooling operation

Fig. 1 The framework of the proposed method. The proposed architecture is composed of two networks:
(a) an FCN with VGG16 backbone architecture and (b) a texton-based shallow network. These two net-
works are integrated complementarily in (c) feature maps fusing block to enable more accurate skin
lesion segmentations.
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since an experimental study24 has shown that a maximum pool-
ing operation significantly outperforms subsampling operations.

The FCN is implemented by transforming the last fully
connected layer of a regular CNN net (e.g., VGG16)19 into con-
volutional layers, and then adding the upsampling and the
deconvolutional layer to the converted CNN net. The replace-
ment of the fully connected layer enables the net to accept
image inputs with arbitrary sizes. The upsampling and decon-
volutional layers produce the output activation map and make
the size of the dense feature map to be consistent with the
size of input image that enables pixel-wise prediction. As afore-
mentioned, the pooling layer reduces the resolution of the fea-
ture map that may result in the coarse predictions, in this case,
the skip connection was introduced in Ref. 18 to combine coarse
predictions at deep layers and fine scale predictions at shallow
layers that improve segmentation details. More specifically, a
skip connection fuses 2× upsampled predictions computed on
the last layer at stride 32 with predictions from Pool4 at stride
16. The sum of the two predictions is then upsampled back to
the image with stride 16. In the same way, the relatively finer
prediction maps (the stride 8 predictions) are obtained by fusing
predictions of shallower layer (Pool3) with 2× upsampling of
the sum of two predictions derived from Pool4 and the last layer.

Although the coarse segmentation issue can be mitigated
using the skip connection, some details are still missing in
the feature maps recovered from the shallow layer via the decon-
volutional layers. Moreover, lack of the spatial regularization for
the FCN may result in diminishing of the spatial consistency for
the segmentations. The local dependency is not sufficiently con-
sidered in the FCN may also lead to some prediction disagree-
ments among pixels within the same structure. In the next
section, we introduce a shallow network to overcome this prob-
lem by integrating the textons-based spatial information into the
FCN architecture.

3.3 Shallow Network with Texton

Texture is one of the representative spatial information that can
provide discriminative features for pattern recognition tasks.
The texton has shown its advantages in encoding texture infor-
mation,25 where the texture is represented by its responses to
a set of filter kernels (W1;W2; : : : ;Wn):

EQ-TARGET;temp:intralink-;e002;63;293R ¼ ½W1 � Iðx; yÞ;W2 � Iðx; yÞ; : : : ;Wn � Iðx; yÞ�; (2)

where * indicates the convolution operation, n is the number of
filter kernels (W). The texton is defined as a set of feature vectors
that are generated by clustering filter responses in R.

The design of an appropriate filter bank is a crucial step to
extract specific texture features. Given the clinical prior knowl-
edge that the edge information provides important cues in skin
segmentation, we employ the second-order derivative Gaussian
filter. The two-dimensional Gaussian is defined as

EQ-TARGET;temp:intralink-;e003;63;175Gðx; yÞ ¼ 1ffiffiffiffiffi
2π

p
σx

e
− x2

2σ2x ×
1ffiffiffiffiffi
2π

p
σy

e
− y2

2σ2y : (3)

This filter is implemented as an anisotropic filter by introduc-
ing an orientation parameter because the edges can be presented
at any orientations. The rotated second-order partial derivative
of Eq. (3) with respect to the y axis direction is given by

EQ-TARGET;temp:intralink-;e004;326;752

∂ 0 0
Gðx 0;y 0Þ
∂y

¼ 1ffiffiffiffiffi
2π

p
σx

e
−x 02
2σ2x ×

1ffiffiffiffiffi
2π

p
σ5y

ðy 02 − σ2yÞe
−y 02
2σ2y

x 0 ¼ x cos θ − y sin θ

y 0 ¼ x sin θ − y cos θ: (4)

This filter is designed as a specific edge detector with σ ¼
1.5 and θ = (0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg,
90 deg, 105 deg, 120 deg, 135 deg, 150 deg, 165 deg). In addi-
tion, we employ standard Gaussian at scale σ ¼ 1 to extract non-
edge structures that also imposes a simple smoothness constrain
for feature representations. In order to reduce the computational
redundancy and increase the feature representations, for aniso-
tropic filters, the maximal response to the filter kernels across all
orientations is considered, whereas the response to the isotropic
filter is recorded directly.

Textons are computed from the filter responses, which are
generated by applying the filter kernels designed in Eq. (4)
to the pixels in m training patches. Then these filter responses
are clustered using a k-means clustering algorithm. As a result,
the k cluster centroids can be represented as k vectors and the
centroids of the clusters form the textons. In order to generate
textons for both lesion and nonlesion, two sets of patches related
to classes of lesion and nonlesion are prepared using ground
truths. More specifically, for lesion class, the patches are
cropped from images with original size guided by the ground
truth mask, and for nonlesion class, the patches are cropped ran-
domly from nonlesion regions in images. In the training stage,
every patch in each set convolutes with the filters, filter
responses generated from all patches in the same set are concat-
enated and clustered to generate textons of one class. In our
method, there are k × c number of textons, where the k (e.g.,
k ¼ 8) is the number of centroids in the k-means and c is
the number of classes (i.e., c ¼ 2, namely, lesion and nonle-
sion). All trained textons are stored into a dictionary (D),
which will be used to calculate the texton map. The bottom
flowchart in Fig. 2 illustrates this process.

Once the texton dictionary has been generated from the train-
ing stage, each input image is translated to a texton map using
the similar implementation, which is performed to encode spa-
tial context and ensure the intensity consistency of lesion. More
specifically, given an input skin image, it first convolves with the
filters in the filter bank to produce filter responses, and then each
pixel in the image is assigned to one of the texton labels li
[li ∈ D ∀i ¼ ð1; 2; 3; : : : ; k × cÞ] from the texton dictionary
(D) based on the minimum distance between the texton and
the filter responses at the pixel. Through this process, a texton
label map is generated, which is further converted into an inten-
sity map. Namely, for the pixels with the same texton label
index, mean intensity of those corresponding pixels in the
input image is calculated. The label index in the texton label
map is then replaced by the corresponding mean intensity.
We call this map as a texton map, and this process is shown
in the top flowchart in Fig. 2.

This shallow network encodes the global and local spatial
information using convolutions with hand-designed filters
from domain specific knowledge, which is able to decompose
high-order visual features or structures to some primitive ele-
ments (here are edges, dots, and spots). Each image can be rep-
resented by different distributions of these elements depending
on the designed filter bank. In this paper, each skin image is
represented by the edges extracted using second-order partial
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derivative of Gaussian and blobs extracted using the standard
Gaussian. Moreover, depending on the number of k, we are
able to discriminate edges with different gradient magnitudes.
Therefore, strong boundaries of lesion and weak edges inside
lesion can be distinguished. In addition, instead of using pool-
ing-like operation used in CNN, which may reduce the resolu-
tion, in the shallow network, the clustering is implemented on
the filter response images, which have the same size of the input
image. Thus our shallow network may keep more edge details. It
is of note that due to the shallow characteristic (e.g., without
nonlinear transformation) of the network, some edges in nonle-
sion region (e.g., hair artifact) may be present, meanwhile, it
may also have limitations to work with the case of extremely
low-contrast lesions with fuzzy boundaries. However, these
nonlesion edges could be suppressed and weak edge cues
could be retained and enhanced by fusing the FCN feature
map, which will be discussed in the next section.

3.4 Fusing the Shallow and Deep Network

The feature maps derived from the FCN and the shallow net-
work with texton described above (red box in Fig. 1) are
fused in a single network by an integrating block. Formally,
let the desired mapping function asMðxÞ, which indicates a non-
linear transformation from an input xl to an output xlþ1. We
hypothesize that this function can be learned more effectively
by introducing a model of prior-knowledge in the deep network.

Instead of fitting the MðxÞ directly by the deep neural network,
we set the FCNmapping function FðxÞ as FðxÞ ¼ MðxÞ − TðxÞ.
The original mapping function thus can be expressed by

EQ-TARGET;temp:intralink-;e005;326;330MðxÞ ¼ FðxÞ þ TðxÞ; (5)

where TðxÞ is the mapping function, which encodes the prior-
knowledge described in Sec. 3.3. Regarding aforementioned
mapping function TðxÞ, the output of the transformation is a
constant, as the weights of the filter banks are predefined and
fixed. In this case, adding TðxÞ can affect the forward propaga-
tion while not influencing the backward propagation to the
FðxÞ. This is because, in the backward propagation calculation,
the gradient is calculated by (local gradient*upstream gradient)
and due to both local gradients are ∂M

∂F ¼ 1 and ∂M
∂T ¼ 1, the

upstream gradient derived from loss can be directly passed to
the FðxÞ for weights update while weights of the filter banks
[encode the prior-knowledge through TðxÞ] remain unchanged.

In order to fuse the two maps in a complementary manner, we
increase the function complexity by introducing two-block convo-
lutional layers. The formulation Eq. (5) can then be expressed as
EQ-TARGET;temp:intralink-;e006;326;138

MðxÞ ¼ CðFðxÞ; fWigÞ þ CðTðxÞ; fWigÞ
C ¼ W2λðμ;W1Þ; (6)

where fWig indicates a set of weights (i is the number of layer) in
the convolutional blockCwith input μ and λ is the activation func-
tion ReLU.

Fig. 2 The framework of the shallow network, where the texton dictionary generation process is shown in
(b) bottom flowchart and (a) top flowchart shows the texton map generation process using the learned
dictionary.
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In our experiment, each map (e.g., FCN and texton map) is
inputted into a separate block, which contains two convolutional
layers. The trainable weights in the convolutional layers are con-
sidered as filters, which are able to learn functions that allow two
feature maps to be fused properly. Namely, in the training proc-
ess, more details from textons feature map can be supplemented
to the feature map of the FCN while the influences of nonlesion
edges in the textons feature map are suppressed by the FCN fea-
ture map. In our experiments, the filter number and the kernel
size are defined empirically as follows: for each block, there are
two inputs and four outputs with kernel size of 5 × 5 pixels in
the first convolutional layer. In the second convolutional layer,
there are four inputs and two outputs with the same kernel size.
Finally, sum of responses to the filters from each block is fed
into the whole network, which is then trained by minimizing the
softmax cross-entropy loss.

We can visually observe the improvement of our network in
Fig. 3, where (a) is an input image (top) and the region with red
box is a zoomed-in image (bottom) that we can observe clearly
the local details in the image. Fig. 3(b) illustrates the integrated
score map (top left in b) derived from our proposed network and
its surface (bottom right in b). Fig. 3(c) is the FCN only score
map with its surface. As we can see, the map in (b) has finer
details than the one in (c), and the region with red box in
(a) is predicted with high probability of being lesion in
(b) using our proposed network, but it is missed in (c). For a
further detailed observation, we can see much more local details
in the surface of (b) than the surface shown in (c).

3.5 Network Training

Once the texton dictionary is generated, as discussed in Sec. 3.3,
the texton map for each image can be calculated based on the
minimum distance between a texton in the dictionary and the
filter responses at each pixel in the image. This in turns enables
our network to be trained in an end-to-end manner. More

specifically, the input image goes through the FCN and shallow
network in parallel to produce two feature maps, which are fur-
ther fused using the two-block convolutional layers [shown in
the red box in Fig. 1(c)]. The final score map is fed into the
softmax with loss layer that forms a complete trainable network.

We employ minibatch stochastic gradient descent (SGD)
with momentum26 to train our network. In our experiment,
we set the batch size of 20. The leaning rate for the FCN is
set to be 0.0001 and momentum as 0.9. The learning rate in
the last integrating layer is set to be 0.001. We initialize the net-
work weights using pretrained VGG16 model for the FCN net-
work and using the initialization as described in Ref. 27 for the
integrating layer. We use dropper layers with rate of 0.5 after
convolutional layers 6 and 7 in Fig. 1 to reduce the over-fitting.

4 Experimental Settings and Results

4.1 Experimental Materials and Evaluation Metrics

In our experiment, two publicly available datasets are used to
train and evaluate our segmentation method. These datasets
are provided by the International Skin Imaging Collaboration
(ISIC) and are widely used for the International Symposium
on Biomedical Imaging 2016 (ISBI 2016) and ISBI 2017 chal-
lenges, respectively.28,29

The ISBI 2016 challenge dataset includes a training set with
900 images and a testing set with 379 images. In the ISBI 2017
challenge dataset, 2000 images are provided as training data,
150 images and 600 images are provided as validation and test-
ing data, respectively. Each image in both datasets is paired with
a ground truth labeling in the form of a binary mask, which was
obtained from manual delineation by an expert. Although the
challenge organizer allows the participants to use some addi-
tional external training data, our method is only trained on
the training dataset provided by the challenges and evaluated
independently on the testing datasets for both challenges.
This could verify the robustness and generalization of our

Fig. 3 The effects of fusing feature maps derived from two networks: (a) a sample image with extremely
low contrast, particularly in the local region shown in zoomed in box, top image in (b) shows the integrated
score map generated from our network with its surface (bottom). (c) The FCN only score map with its
surface.
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method while providing more comparable results obtained
from other participants. The proposed method is evaluated on
ISBI2016 and ISBI2017 datasets independently to verify the
efficacy of integrating context information modeled by shallow
architecture into a deep FCN.

In order to evaluate the performance of our automatic seg-
mentation, we adopted region-based measures suggested in
the ISBI challenge 2016 and 2017.28,29 These evaluation metrics
include segmentation accuracy, sensitivity, specificity, dice coef-
ficient, and Jaccard index (JA).

4.2 Implementation

Our skin lesion segmentation framework is implemented using
MatConvNet30 with CUDA 7.5. The training and testing are
implemented on a PC with a CPU of Inter® i7-4790k at
4.00 GHz and a GPU of Nvidia GeForece GTX 980 Ti with
6 GB GDDR5. All our training and testing data are publicly
available from the ISBI challenges website.28,29

In our experiments, the proposed network was trained sep-
arately using ISBI 2016 and ISBI 2017 training datasets, the
validation dataset of ISBI 2017 was adopted to validate the con-
vergence of the proposed network and to determine the maximal
number of epochs, batches, size and learning rate, etc. The opti-
mal epoch that yields the best performance on the validation
dataset is saved as trained model. Due to the lack of validation
dataset in ISBI 2016, we first randomly divided the 900 training
data into two sets (800 images for training and 100 images for
validation) to obtain the optimal epochs, then our network is
trained using the entire ISBI2016 training data using the
same settings obtained from the validation set. More specifi-
cally, the network was trained with the batch size of 20 and
the total number of epochs is set as 200. The leaning rate for
the FCN is 0.0001 with momentum of 0.9. The learning rate
in the last integrating layer is 0.001. In the training stage, we
resize each image to a fixed size (e.g., 384 × 384 pixels). In
order to preserve the original image information, such as the
height to width ratio, each image is resized by a factor with
the same height to width ratio of the original image and then
we perform zero paddings to the image. The number of trainable
parameters in the proposed network and the original FCN are
135,066,820 and 135,066,008, respectively. The slightly
increased number of parameters in the proposed network
comes from introducing the convolutional block to fuse the fea-
ture maps from shallow and deep networks. However, more
parameters in the proposed network along with the additional
computational cost of texton map generation only lead to a little
more training time compared to the standard FCN. It takes about
15.25 h to train the proposed network over 200 epochs with the
6 GB GTX 980Ti on the ISIB2016 dataset against about 15 h of
training the standard FCN.

In the testing stage, the final score map is fed into a softmax
layer that provides a posterior probability map. In order to evalu-
ate our automatic segmentation with respect to the ground truth
masks, a simple dual-threshold method2 is employed to produce
a binary output. More specifically, the initial lesion region can-
didates are obtained by applying the thresholding value of 0.95
on the probability map, and the region that has the maximal
number of pixels is kept as lesion candidate. Then a relatively
lower thresholding value of 0.5 is applied to the probability map
to obtain the whole lesion region.

4.3 Experimental Results

4.3.1 Comparison of different input sizes

The input size is one of the factors that affect the segmentation
performances since a larger size of the input image with rela-
tively higher resolution contains more details. However, with
the increasing resolution, it may make the network training
more challenging, due to the issues, such as over-fitting and
slow convergence. In our experiment, we evaluated and com-
pared the segmentation performances using two input size set-
tings: 256 × 256 and 384 × 384. Because of the usage of the
VGG16 net, these numbers are the multiples of 32. The evalu-
ation results with different input sizes using ISBI 2016 dataset
are summarized in Table 1. We can observe that the JA of seg-
mentations with input size of 384 × 384 is slightly better than
that with input size of 256 × 256. Figure 4 shows the compa-
rable segmentation results with different input sizes, where
the green contour is the ground truth, the red and blue contours
are the automated segmentation results with the input of 384 ×
384 and 256 × 256, respectively. We can observe that segmen-
tations with 384 × 384 are relatively finer than those generated
from the inputs with size of 256 × 256. For example, comparing
red and blue contours, more details with a convex region of red
contour are presented at left-hand side of Fig. 4(a) and the red
contour with more local details as shown in Fig. 4(d). These
results indicate that relatively higher resolution provides more
image details, and our proposed network has the model capacity
to learn such details.

4.3.2 Results of different integrating layer settings

As described in Sec. 3.4, we fuse both feature maps using con-
volution operators. In our experiments, we compare the segmen-
tation performances using three different settings. Settings (a)
and (b): each map is fed into one convolutional layer with differ-
ent sizes of filter [e.g., 7 × 7 (a) and 5 × 5 (b)], and setting (c):
each map is fed into two convolutional layers with kernel size of
5 × 5. The size of all input images is 384 × 384. The evaluation
results for both ISBI 2016 and 2017 datasets are summarized in
Table 2. We can see that when one convolutional layer is used,
by changing the filter size from 7 × 7 (a) to 5 × 5 (b), the sen-
sitivity is increased from 89.7343 to 90.2079 for the ISBI 2016
dataset and increased from 82.3548 to 83.9807 for the ISBI
2017 dataset; however, specificities for both datasets are
reduced, from 96.0928 to 95.3334 and from 96.6418 to
96.1468, respectively. For 2016 dataset, the evaluation metric
of JA for the setting (b) with filter size of 5 × 5 is improved
to 0.8249 compared with 0.8216 of using setting (a) with filter
size of 7 × 7. A consistent result with the increasing JA can also
be found in 2017 dataset, i.e., JA of 0.7252 for the setting (a)
against JA of 0.7262 for the setting (b). These results show that
increasing the filter size in one convolutional layer may not

Table 1 Evaluation results with different input sizes

Image size Accuracy Dice Jaccard Sea Spa

384 × 384 94.9471 0.8976 0.8277 91.8634 95.2059

256 × 256 94.9110 0.8970 0.8255 90.0697 95.6065

aThe Se denotes the sensitivity and Sp is the specificity.
Note: The best Jaccard value is marked as bold.
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increase the model generalization. However, it can be seen from
Table 2, adding more convolutional layers can improve the seg-
mentation performance, the network with setting (c) achieves
relatively better performance in terms of JA comparing to the
setting (a) and (b) for both datasets. The performance improve-
ment is due to the fact that the stacks of convolutional layers
with 5 × 5 receptive fields contain more weights compared to
a single convolutional layer with 5 × 5 receptive fields, also
the nonlinearities with the stack layers increase the complexity
of nonlinear function compared to the settings with a single con-
volutional layer. Overall, the performances of our method with
three sets outperform the FCN on both datasets (Tables 2–4), of

which the setting (c) achieved best performance. For ISBI 2016
dataset, our method achieves 94.9471 of accuracy, 0.8976 of
Dice, 0.8277 of JA, 91.8634 of sensitivity, and 95.2059 of speci-
ficity, whereas the evaluation results for ISBI 2017 dataset
reach 92.7284 of accuracy, 0.8181 of Dice, 0.7294 of Jaccard,
83.7175 of sensitivity, and 96.3854 of specificity.

Figure 5 shows the results of our fully automatic segmenta-
tion method for the ISBI 2016 testing dataset [Figs. 5(a)–5(d)]
and ISBI 2017 testing dataset [Figs. 5(e)–5(h)]. These examples

Fig. 4 The comparable segmentation results with different input sizes. (a)–(d) Four examples illustrated,
where the green contour in (a)–(d) is the ground truth, the automated segmentation results of our method
with input image size of 384 × 384 and 256 × 256 are presented in red and blue contours, respectively.

Table 2 Evaluation results with different network settings in the inte-
grating layer

Data sets Na AC Dice Jaccard Se Sp

2016 a 94.9641 0.8928 0.8216 89.7343 96.0928

b 94.8577 0.8958 0.8249 90.2079 95.3334

c 94.9471 0.8976 0.8277 91.8634 95.2059

2017 a 92.5956 0.8142 0.7252 82.3548 96.6418

b 92.6068 0.8165 0.7262 83.9807 96.1468

c 92.7284 0.8181 0.7294 83.7175 96.3854

Note: Na indicates different network settings, where network “a” rep-
resents the setting: a convolutional layer with filter size of 7 × 7 for
each feature map, and setting “b” is a convolutional layer with filter
size of 5 × 5, and “c” is two convolutional layers with filter size of 5 × 5.
The best Jaccard values are marked as bold.

Table 3 Results of skin lesion segmentation methods using the ISBI
2016 challenge testing dataset

Method AC DI JA SE SP

Yuan2 0.955 0.912 0.847 0.918 0.966

EXB 0.953 0.910 0.843 0.910 0.965

CUMED17 0.949 0.897 0.829 0.911 0.957

Ours 0.949 0.898 0.828 0.919 0.952

Mahmudur 0.952 0.895 0.822 0.880 0.969

FCN 0.941 0.886 0.814 0.917 0.949

SFU-mial 0.944 0.885 0.811 0.915 0.955

TMUteam 0.946 0.888 0.810 0.832 0.987

Note: A total of 28 teams participated on the ISBI 2016 challenge; the
top five performances on the challenge were collected from the lead-
erboard and the result of Yuan was collected from their paper. In addi-
tion, the results of using FCN only are included for comparison.
The best performances are marked as bold.
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cover several challenging cases, which include cases with low
contrast [Fig. 5(a)], cases with multiple objects [Figs. 5(a) and
5(e)], cases with other artifacts like hair [Fig. 5(b) and 5(f)], dark
mask (d), and other tissues (h), and cases with inhomogeneous
surface [Figs. 5(c), 5(d), and 5(g)]. We can observe that our seg-
mentation results (red contours) are almost identical to the cor-
responding ground truths (green contours) in Figs. 5(a), 5(c),
5(e), 5(g), 5(d), and 5(h) and are slightly under-segmented in
Figs. 5(b) and 5(f). These results show that our proposed
network has a reasonable model capacity to handle images
with various image qualities and can provide accurate lesion
segmentation.

4.3.3 Comparison with other methods on the ISBI 2016
challenge

We compare the results of our method to the top five ranked
teams using the ISBI 2016 challenge testing dataset. The results
are listed in Table 3, where a recent work2 that obtained the best
performance is also included for comparison. These methods are
ranked according to the JA. It can be seen that our method has

shown promising results achieving a competitive performance
compared to CUMED team17 (Table 3). Compared to our rela-
tively shallower architecture (26 layers), the method in Ref. 17
employed a fully convolutional residual network (FCRN) for
lesion segmentation that is a very deep network with 50 layers.
Therefore, in contrast to the FCRN used in Ref. 17, our network
has a similar model capacity but fewer layers to be trained and
thus training our framework is much more efficient. The meth-
ods proposed by EXB and Yuan2 achieved better results than our
method (Table 3). However, it is of note that our model is only
trained on the raw training images provided by the challenge
without utilizing any additional dataset and also without apply-
ing any data augmentation. Moreover, comparing to the standard
FCN, we can observer that our network incorporating the con-
text information with the FCN outperforms the FCN only net-
work on all metrics using the ISBI 2016 challenge dataset.

4.3.4 Comparison with other methods on the ISBI 2017
challenge

Table 4 compares the results of our model to the other deep
learning-based methods on the ISBI 2017 challenge. Most meth-
ods included in Table 4 have adopted the strategy of data aug-
mentation or an additional dataset to train CNN networks such
as ResNet and U-net. However, our model is trained using only
2000 training images provided by the ISBI 2017 challenge data-
set without applying any data augmentation. The results of our
method have shown competitive performance compared to the
other teams, and we have achieved the highest sensitivity of
0.837. It is noted that, the main aim of this study is to investigate
a general framework while proving its efficacy, which allows the
context information to be modeled and integrated into a deep
FCN. We did not boost the segmentation performance via com-
prehensive pre- and postprocessing steps or other ensemble
schemes. With the same training protocol and same hyper-
parameters settings, we can also observe our network outper-
forms the standard FCN on the ISBI 2017 challenge dataset.
These consistent results obtained from both 2016 and 2017 data-
sets indicate that the generation capability of the network can
be improved by introducing the prior-knowledge into the

Table 4 Results of skin lesion segmentation methods using the ISBI
2017 challenge testing dataset

Method AC DI JA SE SP

Yading 0.934 0.849 0.765 0.825 0.975

Matt 0.932 0.847 0.762 0.820 0.978

INESC 0.922 0.824 0.735 0.813 0.968

Ours 0.927 0.818 0.729 0.837 0.964

FCN 0.923 0.811 0.719 0.816 0.964

Vic 0.922 0.810 0.718 0.789 0.975

Juana 0.915 0.797 0.715 0.774 0.970

Note: The best performances are marked as bold.

Fig. 5 Segmentation results for two testing datasets: (a)–(d) ISBI 2016 and (e)–(h) ISBI 2017 testing
datasets. The green contour is the ground truth and the segmentation results of our methods are pre-
sented in red contours.

Journal of Medical Imaging 024001-9 Apr–Jun 2019 • Vol. 6(2)

Zhang, Yang, and Ye: Automatic skin lesion segmentation. . .



deep neural network. In addition, our skin lesion segmentation
framework is very efficient that takes 0.12 s to infer a input
image with the size of 1536 × 2048pixels.

5 Discussion
In this study, we propose a deep learning framework to couple
the FCN derived data driven features with hand-crafted texton
features from a shallow network by introducing an integrating
block (e.g., two-block convolutional layers) trained in an end-to-
end manner. The framework performed well on the skin lesion
segmentation without the need of complicated data augmenta-
tion or comprehensive parameter tuning.

Although a few studies for skin lesion segmentation have
been reported in the literature,2,13,16,17 effective fully automatic
skin lesion segmentation still remains a challenging task due to
large variations of skin lesions in the dermoscopic images. This
is due to influences of various artifacts, low contrast and illumi-
nation, heterogeneous lesion texture, fuzzy boundaries, etc.
Among these previous CNN-based methods, two typical net-
works with different optimized approaches have achieved prom-
ising performance. One approach is to design a network, which
is accompanied with recent techniques, e.g., reducing the over-
fitting using batch normalization and speeding up the training
using different SGD optimizations, as well as improving the seg-
mentation performance by adapting a specific loss function.2

The other method is to increase the model capacity via adding
more layers in the network or employing a very deep network
such as ResNet.17

In the field of biomedical image analysis, given the limited
number of training samples especially limit reliable ground
truths, a common practice for accelerating the network training
is initializing the weights with pretrained models learned from

abundant nature images, or so-called fine-turning.20 However,
for some networks with recent techniques (e.g., batch normali-
zation and new activation layer), it might be difficult to directly
use the well pretrained models (e.g., VGG16) for the weights
initialization. Moreover, for the very deep networks, the vanish
gradient and degradation problems31 make the training pro-
cedure challenging. Although a series of efforts have been
made in CNN-based methods to increase the model capacity
and improve the segmentation performance, few attempts are
taken to encode clinical valuable prior-knowledge into deep
learning architectures to enable accurate segmentation of skin
lesion. In those cases, it is worthwhile to investigate different
strategies to exploit the potential of the deep CNNs that is ben-
eficial to the different challenging biomedical applications with
limited training samples. This study is along this research direc-
tion, with an application of skin lesion segmentation in dermo-
scopic images. In our study, instead of increasing the network
depth, designing task specific loss function or using different
explicit regularizations, we proposed an alternative strategy to
exploit the potential of the deep CNNs, coupling the hand-
crafted features modeled from prior-knowledge with data driven
features learned from a deep neural network into a single-deep
network. More specifically, in our framework, the clinical prior-
knowledge is modeled by textons, simultaneously, more abstract
features that may be difficult to be encoded by traditional feature
engineering techniques are learned automatically by the FCN. It
is of note that our framework has significant potential to be
extended to other biomedical image segmentation tasks because
it is capable of incorporating prior clinical relevant knowledge
or domain knowledge from an expert.

With the limited training samples, employing explicit regu-
larization such as data augmentation is one of the commonly

Fig. 6 Some failure cases of our segmentations: (a) and (b) ISBI 2016 testing dataset, and (c) and
(d) ISBI 2017 testing dataset. The green contour is the ground truth and the segmentation results of
our methods are presented in red contours.
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used strategies to improve the model performance. While data
augmentation may reduce the generalization error, it is not
a major determinant for model generalization.32 This can be
observed from Tables 3 and 4, where we compared our method
with the other top-ranked methods, which employed deep CNNs
and data augmentation. We can also observe that the absolute
differences of accuracy by comparing our method (without
data augmentation) to top five performers (with data augmenta-
tion) in Table 3 ranged from 0 to 0.006. In some cases, our archi-
tecture without data augmentation outperforms those methods
with data augmentation in terms of accuracy. The results
have demonstrated the generalization capability of our model.

Although our method has achieved promising segmentation
results, there are still some poor cases, which are shown in
Fig. 6, where (a) and (c) are two under-segmentation examples
and (b) and (d) show two over-segmentation examples. We
can observe that most of those cases have inhomogeneous appear-
ances and irregular shapes. To further improve the performance, it
is worthwhile to exploit the specific local and global patterns of
skin lesion via other texture analysis method, e.g., more advanced
local dependency and contextual constraints modeled via the
Markov random field can be integrated into our framework to
further increase the model generalization. It is also worthwhile
to employ additional datasets to boost the segmentation perfor-
mance and to further assess the model generalization. The pro-
posed network presented in this paper may inspire further
studies on how to exploit different hand-crafted features and
how to integrate them into a deep network to tackle other prob-
lems in the field of biomedical image processing and analysis.

6 Conclusion
In this paper, we proposed a deep learning-based method for
fully automatic skin lesion segmentation using dermoscopic
images. By coupling the FCN with a shallow network, we
fused the hierarchal features and hand-crafted texton features
efficiently. Experiments on ISBI 2016 and ISBI 2017 skin lesion
challenge datasets have demonstrated promising results and
effective model generalization compared to other state-of-the-
art methods. Our experimental results show that the generation
capability of the network can be improved by introducing the
prior-knowledge into the deep neural network. Compared to
a very deep network (e.g., ResNet), our relatively shallower net-
work can still achieve comparable performance for skin lesion
segmentation. The method could also be potentially adapted to
other medical image segmentation applications.

Disclosures
The authors declare they have no conflict of interest with regard
to the work presented.

Acknowledgments
The authors are grateful to the International Skin Imaging
Collaboration, the organizers of International Symposium on
Biomedical Imaging 2016 and 2017 (ISBI 2016, 2017) chal-
lenge of “Skin lesion analysis toward melanoma detection,”
who make the data sets publicly available.

References
1. D. S. Rigel, R. J. Friedman, and A. W. Kopf, “The incidence of malig-

nant melanoma in the United States: issues as we approach the 21st
century,” J. Am. Acad. Dermatol. 34(5), 839–847 (1996).

2. Y. D. Yuan, M. Chao, and Y. C. Lo, “Automatic Skin lesion segmenta-
tion using deep fully convolutional networks with jaccard distance,”
IEEE Trans. Med Imaging 36(9), 1876–1886 (2017).

3. WHO, “How common is skin cancer?,” https://www.who.int/uv/faq/
skincancer/en/index1.html (2017).

4. S. H. Argenziano et al., Dermoscopy: A Tutorial, EDRA Medical
Publishing & New Media, Milan (2002).

5. R. B. Oliveira et al., “Computational methods for the image segmenta-
tion of pigmented skin lesions: a review,” Comput. Methods Prog.
Biomed. 131, 127–141 (2016).

6. F. Thompson and M. K. Jeyakumar, “Review of segmentation methods
on malignant melanoma,” in Proc. IEEE Int. Conf. Circuit, Power and
Comput. Technol. (ICCPCT 2016) (2016).

7. M. E. Celebi et al., “A state-of-the-art survey on lesion border detection
in dermoscopy images,” in Dermoscopy Image Analysis, pp. 97–129,
CRC Press, Boca Raton, Florida (2015).

8. M. E. Celebi et al., “Lesion border detection in dermoscopy images
using ensembles of thresholding methods,” Skin Res. Technol. 19(1),
E252–E258 (2013).

9. C. A. Z. Barcelos and V. B. Pires, “An automatic based nonlinear dif-
fusion equations scheme for skin lesion segmentation,” Appl. Math.
Comput. 215(1), 251–261 (2009).

10. P. G. Cavalcanti et al., “An ICA-based method for the segmentation of
pigmented skin lesions in macroscopic images,” in Annu. Int. Conf.
IEEE Eng. Med. and Biol. Soc., pp. 5993–5996 (2011).

11. T. E. Chan, B. Y. Sandberg, and L. A. Vese, “Active contours without
edges for vector-valued images,” J. Visual Commun. Image Represent.
11(2), 130–141 (2000).

12. B. Bozorgtabar, M. Abedini, and R. Garnavi, “Sparse coding based skin
lesion segmentation using dynamic rule-based refinement,” Lect Notes
Comput. Sci. 10019, 254–261 (2016).

13. L. Bi et al., “Automated skin lesion segmentation via image-wise super-
vised learning and multi-scale superpixel based cellular automata,” in
IEEE 13th Int. Symp. Biomed. Imaging (ISBI), pp. 1059–1062 (2016).

14. A. Pennisi et al., “Skin lesion image segmentation using Delaunay tri-
angulation for melanoma detection,” Comput. Med. Imaging Graphics
52, 89–103 (2016).

15. D. G. Shen, G. R. Wu, and H. I. Suk, “Deep learning in medical image
analysis,” Annu. Rev. Biomed. Eng. 19, 221–248 (2017).

16. L. Bi et al., “Dermoscopic image segmentation via multistage fully con-
volutional networks,” IEEE Trans. Bio-Med. Eng. 64(9), 2065–2074
(2017).

17. L. Q. Yu et al., “Automated melanoma recognition in dermoscopy
images via very deep residual networks,” IEEE Trans. Med. Imaging
36(4), 994–1004 (2017).

18. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conf. Comput. Vision and Pattern
Recognit. (CVPR), pp. 3431–3440 (2015).

19. K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. on Learning
Representations (2014).

20. N. Tajbakhsh et al., “Convolutional neural networks for medical image
analysis: full training or fine tuning?” IEEE Trans. Med. Imaging 35(5),
1299–1312 (2016).

21. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” Lect. Notes Comput. Sci. 8689, 818–833 (2014).

22. R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in IEEE Conf. Comput. Vision and Pattern
Recognit. (CVPR), pp. 580–587 (2014).

23. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proc. 14th Int. Conf. Artif. Intell. and Stat., pp. 315–323 (2011).

24. D. Scherer, A. Muller, and S. Behnke, “Evaluation of pooling operations
in convolutional architectures for object recognition,” Lect. Notes
Comput. Sci. 6354, 92–101 (2010).

25. T. Leung and J. Malik, “Representing and recognizing the visual appear-
ance of materials using three-dimensional textons,” Int. J. Comput.
Vision 43(1), 29–44 (2001).

26. N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks 12(1), 145–151 (1999).

27. K. M. He et al., “Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification,” in IEEE Int. Conf. Comput.
Vision, pp. 1026–1034 (2015).

Journal of Medical Imaging 024001-11 Apr–Jun 2019 • Vol. 6(2)

Zhang, Yang, and Ye: Automatic skin lesion segmentation. . .

https://doi.org/10.1016/S0190-9622(96)90041-9
https://doi.org/10.1109/TMI.2017.2695227
https://www.who.int/uv/faq/skincancer/en/index1.html
https://www.who.int/uv/faq/skincancer/en/index1.html
https://www.who.int/uv/faq/skincancer/en/index1.html
https://www.who.int/uv/faq/skincancer/en/index1.html
https://www.who.int/uv/faq/skincancer/en/index1.html
https://doi.org/10.1016/j.cmpb.2016.03.032
https://doi.org/10.1016/j.cmpb.2016.03.032
https://doi.org/10.1109/ICCPCT.2016.7530350
https://doi.org/10.1109/ICCPCT.2016.7530350
https://doi.org/10.1111/j.1600-0846.2012.00636.x
https://doi.org/10.1016/j.amc.2009.04.081
https://doi.org/10.1016/j.amc.2009.04.081
https://doi.org/10.1109/IEMBS.2011.6091481
https://doi.org/10.1109/IEMBS.2011.6091481
https://doi.org/10.1006/jvci.1999.0442
https://doi.org/10.1007/978-3-319-47157-0
https://doi.org/10.1007/978-3-319-47157-0
https://doi.org/10.1109/ISBI.2016.7493448
https://doi.org/10.1016/j.compmedimag.2016.05.002
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1109/TBME.2017.2712771
https://doi.org/10.1109/TMI.2016.2642839
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.1007/978-3-319-10590-1
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1007/978-3-642-15825-4
https://doi.org/10.1007/978-3-642-15825-4
https://doi.org/10.1023/A:1011126920638
https://doi.org/10.1023/A:1011126920638
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123


28. D. Gutman et al., “Skin lesion analysis toward melanoma detection: a
challenge at the international symposium on biomedical imaging (ISBI)
2016, hosted by the international skin imaging collaboration (ISIC),”
https://arxiv.org/abs/1605.01397 (2016).

29. G. D. Codella et al., “Skin lesion analysis toward melanoma detection: a
challenge at the 2017 international symposium on biomedical imaging
(ISBI), hosted by the International Skin Imaging Collaboration (ISIC),”
https://arxiv.org/abs/1710.05006 (2017).

30. A. Vedaldi and K. Lenc, “MatConvNet convolutional neural networks
for MATLAB,” in Proc. 23rd ACM Int. Conf. Multimedia, pp. 689–692
(2015).

31. K. M. He et al., “Deep residual learning for image recognition,” in IEEE
Conf. Comput. Vision and Pattern Recognit. (CVPR), pp. 770–778 (2016).

32. C. Y. Zhang et al., “Understanding deep learning requires rethinking
generalization,” in ICLR, Toulon, France (2017).

Lei Zhang received his MSc and PhD degrees from the University of
East Anglia, UK, in 2008 and 2014, respectively. He is currently
a research fellow at the University of Lincoln working in the

Laboratory of Vision Engineering. His main research interests are
computer vision and machine learning. In particular, medical image
processing and analysis, image segmentation, and object detection.

Guang Yang received his MSc degree in vision imaging and virtual
environments from the University College London (UCL), Department
of Computer Science in 2006 and his PhD jointly from the UCL Centre
for Medical Image Computing and Department of Computer Science
and Medical Physics in 2012. He is currently an image processing
physicist and a senior research fellow working at Cardiovascular
Research Centre, Royal Brompton Hospital, and affiliate with the
National Heart and Lung Institute, Imperial College London.

Xujiong Ye is a professor of medical imaging and computer vision in
the School of Computer Science, University of Lincoln, UK. He has
more than 20 years’ research and development experience in medical
imaging and computer vision from both academia and industry. Her
main research is to develop computational models using advanced
medical image analysis, computer vision, and artificial intelligence
to support clinicians in decision-making.

Journal of Medical Imaging 024001-12 Apr–Jun 2019 • Vol. 6(2)

Zhang, Yang, and Ye: Automatic skin lesion segmentation. . .

https://arxiv.org/abs/1605.01397
https://arxiv.org/abs/1605.01397
https://arxiv.org/abs/1605.01397
 https://arxiv.org/abs/1710.05006
 https://arxiv.org/abs/1710.05006
 https://arxiv.org/abs/1710.05006
https://doi.org/10.1145/2733373.2807412
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

