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Abstract. Dual-energy computed tomography (CT) has the potential to decompose tissues into different mate-
rials. However, the classic direct inversion (DI) method for multimaterial decomposition (MMD) cannot accurately
separate more than two basis materials due to the ill-posed problem and amplified image noise. We propose an
integrated MMD method that addresses the piecewise smoothness and intrinsic sparsity property of the decom-
position image. The proposedMMDwas formulated as an optimization problem including a quadratic data fidelity
term, an isotropic total variation term that encourages image smoothness, and a nonconvex penalty function
that promotes decomposition image sparseness. The mass and volume conservation rule was formulated as
the probability simplex constraint. An accelerated primal-dual splitting approach with line search was applied
to solve the optimization problem. The proposed method with different penalty functions was compared against
DI on a digital phantom, a Catphan® 600 phantom, a quantitative imaging phantom, and a pelvis patient. The
proposed framework distinctly separated the CT image up to 12 basis materials plus air with high decomposition
accuracy. The cross talks between two different materials are substantially reduced, as shown by the decreased
nondiagonal elements of the normalized cross correlation (NCC) matrix. The mean square error of the measured
electron densities was reduced by 72.6%. Across all datasets, the proposed method improved the average
volume fraction accuracy from 61.2% to 99.9% and increased the diagonality of the NCC matrix from 0.73
to 0.96. Compared with DI, the proposed MMD framework improved decomposition accuracy and material
separation. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.4.044004]
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1 Introduction
Conventional x-ray computed tomography (CT) projections
are acquired with a single-energy spectrum. The reconstructed
single-energy CT (SECT) provides the linear attenuation coef-
ficients (LACs) of the scanning object, but the LACs depend on
both the effective atomic number and the electron density, mak-
ing it insufficient to determine the material components. Dual-
energy CT (DECT) is acquired with two distinct energy spectra
that are attenuated differently by the tissues. Therefore, DECT
provides enhanced information to better differentiate and quan-
tify material compositions. DECT shows promise in many clini-
cal applications, including virtual unenhancement imaging,1,2

liver lesion characterization,3 kidney stone characterization,4

oncologic imaging,1,5 bone removal,1 etc.
Despite the potential of using DECT for multimaterial decom-

position (MMD), the problem is ill-defined for decomposing more
than two materials without additional assumption.6,7 Existing
DECT MMD approaches can be classified into three categories:
projection-based method, integrated method, and image-based
method. The projection-based method decomposes the two inde-
pendent sinograms into two basis components by interpolating the
lookup table and then performs separate image reconstruction.8

The integrated method incorporates the DECTacquisition into the
forward projection model and then reconstructs basis material
images directly from the DECT projections.9 The projection-

based method and integrated method are robust to beam harden-
ing artifacts,8,9 but there are several limitations. First, the projec-
tion-based method is limited to decomposing two basis materials.
It is neither straightforward nor desirable to introduce additional
constraints in the projection domain. Second, the projection-based
method requires strict spatial and temporal consistency between
the high-energy (HE) and low-energy (LE) acquisition. The con-
dition is not met by many DECT systems using dual-source
or single-source with fast kilovoltage-switching. Third, the inte-
grated method is computationally expensive due to the repeated
projection and backprojection during the reconstruction of basis
image components. Fourth, the coupling between the reconstruc-
tion and image decomposition in the integrated method, especially
with multiple basis materials, leads to decomposition results that
are sensitive to parameter tuning.

Alternatively, image-based decomposition methods were
investigated, which perform basis material decomposition on
the HE and LE CT images. This method is applicable to all
DECT systems, straightforward, and computationally tractable.
Mendonça et al.10 proposed an image-based MMD method that
introduces two assumptions: mass and volume conservation,
and that there are no more than three materials in each voxel.
For each voxel, the method loops over a material triplet library,
identifies the best-fit triplet, and decomposes the voxel into the
three materials via direct matrix inversion. The method is termed
direct inversion (DI), and it demonstrates the capability of
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decomposing CT into more than three basis materials. However,
the decomposition accuracy is sensitive to the selection of
material triplet library, which limits the flexibility of MMD, and
the resultant images suffer from substantially amplified noise.

In this study, we propose a DECT MMD method that de-
composes the CT volume into multiple basis materials accu-
rately while suppressing the decomposition image noise. Instead
of rigidly confining each voxel to contain at most three basis
materials, a nonconvex sparsity term is introduced to penalize
the number of materials that are simultaneously present in the
same voxel.

2 Method

2.1 Formulation

The image domain DECT MMD problem is formulated as
follows:
EQ-TARGET;temp:intralink-;e001;63;562

minimize
x

1

2
kAx − bk22 þ λTVðxÞ þ η

X
k;i

jxkijα

subject to x ∈ SP; (1)

where the optimization variable x is the volume fraction (VF)
matrix of dimension Nk by Ni. The voxels on the component
image are indexed by i, and the decomposition materials are
indexed by k. xki is the VF of the k’th material for the i’th
voxel. A is the component-to-attenuation transformation matrix
defined as

EQ-TARGET;temp:intralink-;sec2.1;63;432A ¼
�
μ1l μ2l · · · μNkl

μ1h μ2h · · · μNkh

�
;

where μkl and μkh are the LACs of the k’th material at HE and
LE, respectively. Matrix A transforms the VF into the LACs at
HE and LE for each voxel. b is the attenuation image at HE and
LE from measurements, defined as

EQ-TARGET;temp:intralink-;sec2.1;63;343b ¼
�
b1l b2l : : : bNil

b1h b2h : : : bNih

�
;

where bil and bih denotes the LAC of the i’th voxel on the CT
image at LE and HE, respectively. TVðxÞ is the isotropic total
variation regularization, defined as

EQ-TARGET;temp:intralink-;sec2.1;63;265TVðxÞ ¼
X
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇rxÞ2ik þ ð∇cxÞ2ik

q
;

where ∇r and ∇c are the derivative matrix along the row and
column directions, respectively. SP is the probability simplex
set that enforces the mass and volume conservation rule on each
voxel, such that each column of the VF matrix x satisfies the
sum-to-one and non-negative constraints:

EQ-TARGET;temp:intralink-;e002;63;164x ∈ SP ↔

(
xki ≥ 0; ∀ i; kP
k
xki ¼ 1; ∀ i : (2)

The first term is the quadratic data fidelity term that mini-
mizes the difference between the measured DECT image and
the estimated DECT image calculated from the VF matrix x.
The second term is the isotropic TV regularization term, applied

on each component image to encourage image smoothness
while preserving image edges. The last term is the penalty func-
tion in the form of j · jα (0 ≤ α ≤ 1), which promotes sparsity on
the number of materials that simultaneous present in the same
voxel. In this study, we specifically focus on four cases with
α ¼ 0; 1

2
; 2
3
; 1. In the case of α ¼ 1, the sparsity term reduces

to a constant under the mass and volume conservation constraint
ðx ∈ SPÞ. In other cases, the penalty functions are nonconvex
with the nonconvexity increases as α goes to 0.

2.2 Algorithm

This study utilizes an accelerated primal-dual splitting approach
with line search for both convex and nonconvex problems,11,12

which solves the optimization problem of the form:

EQ-TARGET;temp:intralink-;e003;326;590minimize FðKxÞ þ GðxÞ; (3)

where G is convex, F possibly nonconvex, and K a linear
operator.

The optimization problem in Eq. (1) is formulated into the
canonical form shown in Eq. (3) by defining

EQ-TARGET;temp:intralink-;sec2.2;326;515K ¼
" A
D
I

#
; GðxÞ ¼ ISpðxÞ ¼

�
∞; x ∈= Sp
0; x ∈ Sp

;

EQ-TARGET;temp:intralink-;sec2.2;326;449F

 " ẑ1
ẑ2
ẑ3

#!
¼ F1ðẑ1Þ þ F2ðẑ2Þ þ F3ðẑ3Þ;

EQ-TARGET;temp:intralink-;sec2.2;326;404F1ðẑ1Þ ¼
1

2
kẑ1 − bk22;

EQ-TARGET;temp:intralink-;sec2.2;326;373F2ðẑ2Þ ¼ λkẑ2k1;
EQ-TARGET;temp:intralink-;sec2.2;326;352ðF3ðẑ3ÞÞi ¼ ηjẑ3ijα:

FðKxÞ is equivalent to the objective function in Eq. (1). GðxÞ
is an indicator function that equals to 0 if x ∈ Sp and infinity
if x ∈= Sp, which enforces the sum-to-one and non-negative
constraints.

The accelerated primal-dual algorithm with line search12 is
presented in Algorithm 1, where the key steps are the evalua-
tions of the proximal operator of functions G and F. The proxi-
mal operator of a function H with step size t is defined as
follows:13

EQ-TARGET;temp:intralink-;e004;326;243ProxtHðzÞ ¼ argmin
x

�
HðxÞ þ 1

2t
kx − zk22

�
. (4)

Following the definition, the proximal operator of G reduces
to the projection onto the probability simplex Sp, which can
be efficiently solved by sorting and thresholding the input vec-
tor, as presented in Algorithm 2.14

With the separable sum rule, the evaluation of the proximal
operator of F reduces to evaluating the proximal operator with
respect to each variable:

EQ-TARGET;temp:intralink-;sec2.2;326;121ProxwF

 " ẑ1
ẑ2
ẑ3

#!
¼
 " ProxwF1

ðẑ1Þ
ProxwF2

ðẑ2Þ
ProxwF3

ðẑ3Þ

#!
:
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Following the definition of proximal operator in Eq. (4), the
proximal operators of F1 and F2 are

EQ-TARGET;temp:intralink-;sec2.2;63;169ProxwF1
ðẑ1Þ ¼

ẑ1 þ wb
wþ 1

;

EQ-TARGET;temp:intralink-;sec2.2;63;116ðProxwF2
ðẑ2ÞÞik ¼

��
1 − wλ

kðẑ2Þikk2

	
ðẑ2Þik; kðẑ2Þikk2 > wλ

0; kðẑ2Þikk2 ≤ wλ
:

Due to the separability, the proximal operator of F3 reduces to
pointwise proximal operator evaluation of ηj · jα, as follows:

EQ-TARGET;temp:intralink-;e005;326;741ðProxwF3
ðẑ3ÞÞi ¼ argmin

x

�
ηjxjα þ 1

2w
ðx − ẑ3iÞ2

�
: (5)

Exact analytic solutions to Eq. (5) exist for the scenarios con-
sidered in this study ðα ¼ 0; 1

2
; 2
3
; 1Þ, which can be found in

Sec. 6.1. For other values of α, the proximal operators could
be evaluated numerically with an iterative approach, such as
Newton’s method.15

With the evaluations of the proximal operator of functions
G and F, the DECT MMD optimization problem in Eq. (1)
could be solved following Algorithm 1.

2.3 Evaluation

The proposed framework with different sparsity parameters in
the penalty functions was evaluated on a digital phantom, a
Catphan® 600 phantom, a quantitative imaging phantom, and
a pelvis patient, and is compared with the DI method.10 The
quantitative imaging phantom data were acquired on a Siemens
SOMATOM Force DECT. The Catphan and pelvis patient data
were acquired on a Siemens SOMATOM Definition Flash. For
the pelvis patient data, the mAs and CT dose index for the [LE,
HE] acquisitions were [170 mAs, 131 mAs] and [4.92 mGy,
3.66 mGy], respectively. The LE and HE CT images, as shown
in Figs. 1, 3, 5, and 7, were reconstructed using the standard
filtered backprojection (FBP). The HE LAC and LE LAC of the
basis material were computed as the average values of the HE
LACs and LE LACs of the region of interest (ROIs), as shown
on the LE CT images for all cases. These LAC values are
presented in Table 4 in Sec. 6.

For quantitative evaluation of the material decomposition
accuracy, the mean and standard deviation (STD), electron den-
sity, as well as the VF, were computed within each ROI on the
decomposition component image. The electron density ρi at
voxel i is calculated by

EQ-TARGET;temp:intralink-;sec2.3;326;368ρi ¼
XNk

k¼1

xkiρðkÞ;

where ρðkÞ is the electron density of the k’th material. The VF
accuracy in a uniform ROI is defined as follows:

EQ-TARGET;temp:intralink-;sec2.3;326;291VF ¼
�
1 −

kx − xgk2
kxgk2

�
× 100%;

where x is the mean material component vector over all voxels
within the uniform ROI and xg is the material component vector
of the ground truth decomposition.

To quantify the amount of overlap between different material
decompositions across the whole image, the normalized cross
correlation (NCC) coefficients at zero lag are evaluated for every
pair of materials. The NCC coefficient at zero lag of material k1
and k2 is defined as follows:

EQ-TARGET;temp:intralink-;e006;326;153Rk1k2 ¼
PNi

i¼1 xk1ixk2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi
i¼1 x

2
k1i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi
i¼1 x

2
k2i

q ; (6)

which equals to 0 if the two materials are completely separated
and equals to 1 if they have identical distribution on the whole
image. The NCC matrix is defined as a matrix with entries of

Algorithm 2 Proximal operator evaluation of G ðProxtGðxÞÞ.

Input: x ∈ RNk × RNi

For i ¼ 1;2; : : : ;Ni do

Sort fx1i ; x2i ; · · · ; xki ; · · · ;xNk ig into x 0 such that
x 0

1i ≥ x 0
2i ≥ · · ·≥ x 0

Nk i

Find Ji ≔ maxf1 ≤ k ≤ K jx 0
k i þ 1

k ð1 −
Pk

j¼1 x
0
j i Þg

Define x̂ i ≔ 1
J ð1 −

PJ
j¼1 x

0
j i Þ

For k ¼ 1; 2; : : : ;Nk do

ðProxtGðxÞÞik ≔ maxfxik þ x̂ i ;0g

Output: ProxtGðxÞ

Algorithm 1 Accelerated primal-dual algorithm with line search.

Initialization: x0 ≔ 0 ∈ X , z0 ≔ 0 ∈ Z , t0 > 0, θ0 ≔ 1, β0 ≔ 1, γ > 0,
r ≔ 0.8

For k ¼ 1;2; : : : , do

xk ≔ Proxtk−1 ;Gðxk−1 − tk−1KT zk−1Þ

βk ≔ βk−1ð1þ γtk−1Þ

t ≔ tk−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βk−1
βk

ð1þ θk−1Þ
q

Repeat

θk ≔ t
tk−1

xk ≔ xk þ θk ðxk − xk−1Þ

sk ≔ βk t

zk ≔ zk−1 þ skKxk

zk ≔ zk − skProxs−1
k ;F

�
zk
sk

	
tk ≔ t

Break if
ffiffiffiffiffi
βk

p
tkKT ðzk − zk−1Þk2 ≤ kzk − zk−1k2

t ≔ tk � r

End

End
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Rk1k2 . The diagonal elements of the NCC matrix are equal to 1
by definition, and the other elements are between 0 and 1,
indicating the extent of material separation. If all materials are

completely separated for all voxels, then all the off-diagonal
elements should be 0. The diagonality D of the NCC matrix
is computed using the Pearson correlation coefficient:

EQ-TARGET;temp:intralink-;sec2.3;63;707D ¼

P

k1;k2Rk1k2

�
P
k1;k2k1k2Rk1k2

�
−

P

k1;k2k1Rk1k2

�
P
k1;k2k2Rk1k2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k1;k2Rk1k2

�
P
k1;k2k

2
1Rk1k2

�
−

P

k1;k2k1Rk1k2

�
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
k1;k2Rk1k2

�
P
k1;k2k

2
2Rk1k2

�
−

P

k1;k2k2Rk1k2

�
2

q ;

where D equals to 1 for the diagonal matrix, −1 for the anti-
diagonal matrix, and 0 for the uniform matrix. In the case
of every voxel on the CT image being composed of only a
single material, the diagonality of the NCC matrix is 1. On the
other hand, in the case where every voxel contains an equal
amount of all basis materials, the diagonality of the NCC
matrix is 0. The diagonality D of the NCC matrix summarizes
the decomposition separability over the whole image and
across all materials.

3 Results

3.1 Digital Phantom

Figure 1 shows the LE and HE CT image of the digital phantom.
This simple digital phantom is made up of four basis materials,
including bone, iodine, water, and air, corresponding to the
four ROIs indicated by the rectangular area. Figure 2 shows
the decomposition results on the digital phantom using the
proposed framework with different α values and the classic
DI method. In the cases when α ¼ 0; 1

2
; 2
3
, the proposed frame-

work distinctly separated all basis materials and with low noise,
achieving a clear border between different materials. On the
contrary, neither DI nor the proposed framework with α ¼ 1
achieved the desired sparsity or assigned the correct material
to each ROI. The material separation capability of the proposed
framework with α ¼ 0; 1

2
; 2
3
is further confirmed with the NCC

map in Fig. 2, showing little or no cross talks between two
materials. With DI, the iodine component is mixed up with the
bone and water. In the case of α ¼ 1, none of the component
is separated.

3.2 Catphan® 600 Phantom

Figure 3 shows the LE and HE CT images of the Catphan® 600
phantom with contrast rods, which are made of six basis mate-
rials, including Teflon, Delrin, iodine solution of 10 mg=ml,
polymethyl pentene (PMP), inner soft tissue, and air, corre-
sponding to the six ROIs on the LE CT image [Fig. 3(a)].
The materials in the labeled rods on the HE CT [Fig. 3(b)] are
Teflon, Delrin, iodine solution of 10 mg=ml, polystyrene, low-
density polyethylene, PMP, and iodine solution of 5 mg=ml,
respectively. The VF accuracy was evaluated on the six
ROIs, and the electron density was evaluated on the seven con-
trast rods. Figure 4 shows the decomposition image and the
NCC map. The proposed framework with α ¼ 0; 1

2
; 2
3
success-

fully separated the phantom into the six basis components with
minimal cross talk between different materials. With the
classical DI method, the off-diagonal elements of the NCC
matrix are up to 0.36, showing that the two corresponding basis
materials, Delrin and PMP, are not well-separated. The proposed
method with α ¼ 1 is unable to achieve material separation at
all. Table 1 shows the evaluated electron densities for the seven
contrast rods. The mean square error of the electron density
was reduced by 72.6% for the proposed framework with
α ¼ 0;1=2; 2=3 compared with DI.

3.3 Quantitative Imaging Phantom

Figure 5 show the DECT image for the quantitative imaging
phantom, which consists of 12 basis materials, including
2 mg=ml iodine solution (ROI1), 5 mg=ml iodine solution
(ROI2), 10 mg=ml iodine solution (ROI3), 15 mg=ml iodine

Fig. 1 (a) The LE: 75 kVp and (b) the HE: 140 kVp CT image of the digital phantom. The components
of the ROIs are bone (ROI1), iodine (ROI2), water (ROI3), and air (ROI4). The displaying window is
½0.01; 0.065� mm−1.
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solution (PMP) (ROI4), 50 mg=ml calcium solution (ROI5),
100 mg=ml calcium solution (ROI6), 300 mg=ml calcium sol-
ution (ROI7), HE blood 70 (ROI8), HE blood 100 (ROI9),
adipose (ROI10), water (ROI11), and brain (ROI12). In this
phantom study, to avoid being trapped in undesired local min-
ima with the increased number of basis materials, the algorithm
is initialized by setting VF ¼ 1 for the basis material that is clos-
est to each pixel. Figure 6 shows the decomposition images with
the corresponding NCC map. The proposed framework with
α ¼ 0; 1

2
; 2
3
decomposed the DECT images into 12 different basis

components plus air and improved the VF accuracy from 51%
using DI method to 100%. The nondiagonal entries of the NCC
map are close to 0 for the proposed framework with α ¼ 0; 1

2
; 2
3
,

showing clean separation of the basis materials. The off-

diagonal entries are close to 1 for the α ¼ 1 scenario. The
classical DI method is unable to separate similar materials.
For example, the HE blood 100 (ROI9), adipose (ROI10), and
water (ROI11) have similar LAC values, resulting in substantial
nonzero NCC elements Rk1k2 using DI.

3.4 Pelvis Patient

Figures 7 and 8 show the DECT image and the decomposition
images with the corresponding NCC map, respectively, for the
pelvis patient. The proposed framework with α ¼ 0; 1

2
; 2
3
decom-

posed the DECT images into bone (ROI1), iodine (ROI2),
muscle (ROI3), fat (ROI4), and air, and achieved an NCCmatrix
with nondiagonal coefficients close to 0.

Fig. 2 Decomposition component images of (1) bone, (2) iodine, (3) water, and (4) air, decomposed
using the proposed framework when (a) α ¼ 0, (b) α ¼ 1

2, (c) α ¼ 2
3, (d) α ¼ 1, and (e) the DI method.

The last column is the 4 × 4 NCC map of the decomposition in the same row, with each square showing
the corresponding entries in the NCC matrix, where the basis materials are bone, iodine, water, and air,
from top to bottom and from left to right.
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Fig. 3 (a) The LE: 75 kVp and (b) the HE: 125 kVp CT image of the Catphan® 600 phantom. The material
components of the ROIs on the low energy CT image are Teflon (ROI1), Delrin (ROI2), iodine of
10 mg=ml (ROI3), PMP (ROI4), inner soft tissue (ROI5), and air (ROI6). The labeled contrast rods
on the HE CT image are composed of (1) Teflon, (2) Delrin, (3) iodine solution of 10 mg=ml, (4) polysty-
rene, (5) low-density polyethylene, (6) PMP, and (7) iodine solution of 5 mg=ml. The displaying window
is ½0.01; 0.04� mm−1.

Fig. 4 Decomposition component images of (1) Teflon, (2) Delrin, (3) iodine solution of 10 mg=ml,
(4) PMP, (5) inner soft tissue (LDPE), (6) air, decomposed using the proposed framework when
(a) α ¼ 0, (b) α ¼ 1

2, (c) α ¼ 2
3, and (d) α ¼ 1; (e) the DI method. The last column is the 6 × 6 NCC map

of the decomposition in the same row, with each square showing the corresponding entries in the NCC
matrix, where the basis materials are Teflon, Delrin, iodine solution of 10 mg=ml, PMP, LDPE, and air,
from top to bottom and from left to right.
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Table 2 summarizes the VF accuracy and diagonality of
the NCC matrix for all datasets. The proposed method with
α ¼ 0; 1

2
; 2
3
achieves a significantly higher VF accuracy and diag-

onality than the comparison methods and approaching nearly
perfect material decomposition. Across all datasets, the pro-
posed method improved the average VF accuracy from 61.2%
to 99.9% and increased the diagonality of the NCC matrix from
0.73 to 0.96.

Table 3 presents the runtime and the hyperparameters used in
all cases. Despite that our algorithm used MATLAB built-in
GPU computing tools for acceleration, the proposed framework
takes 12 min on average, which is slower than the DI method,
requiring only 3 min on CPU. The hyperparameters were tuned

case-by-case to achieve visually desired sparseness and smooth-
ness. The sparseness and the smoothness can be promoted by
increasing η and λ, respectively. γ and t are related to the step
sizes in the algorithms, which were tuned in a trial-and-error
way for faster and more stable convergence.

Figure 9 shows the convergence plots for different α values
on the Catphan and the pelvis patient case. The objective values
for different cases were not comparable since different hyper-
parameter values were used in different cases. However, it is
worth noting that the plots show different converging patterns.
For the convex case α ¼ 1, the objective goes down nicely with
a convex-shaped convergence curve, showing stable and robust
convergence. For the nonconvex case α ¼ 0, the curve goes

Table 1 The electron densities measured on the Catphan contrast rods labeled in Fig. 3(b). The RMSE is evaluated for each method as the
mean square error of the seven rods.

Method
Rod 1
Teflon

Rod 2
Delrin

Rod 3
Iodine

(10 mg=ml)
Rod 4

polystyrene
Rod 5
LDPE

Rod 6
PMP

Rod 7
Iodine

(5 mg=ml)
Average
NMSE

Ground truth ρe 6.240 4.525 3.368 3.400 3.155 2.851 3.356 \

α ¼ 0 ρe 6.240 4.525 3.368 3.104 3.008 2.851 3.354 1.92%

NMSE 0.00% 0.00% 0.00% 8.70% 4.67% 0.00% 0.06%

α ¼ 1= 2 ρe 6.218 4.514 3.357 3.119 2.997 2.854 3.352 2.06%

NMSE 0.35% 0.24% 0.33% 8.26% 5.01% 0.12% 0.13%

α ¼ 2= 3 ρe 6.211 4.507 3.346 3.113 2.984 2.856 3.346 2.27%

NMSE 0.46% 0.41% 0.66% 8.43% 5.43% 0.16% 0.30%

α ¼ 1 ρe 6.169 4.203 4.011 2.961 2.770 2.509 3.578 10.16%

NMSE 1.14% 7.11% 19.11% 12.91% 12.22% 12.01% 6.63%

DI ρe 4.847 4.174 3.699 3.251 3.134 2.887 3.523 7.32%

NMSE 22.33% 7.76% 9.83% 4.38% 0.67% 1.28% 4.96%

Fig. 5 (a) The LE: 100 kVp and (b) the HE: 150 kVp CT image of the quantitative imaging phantom. The
material components of the ROIs are 2 mg=ml iodine solution (ROI1), 5 mg=ml iodine solution (ROI2),
10 mg=ml iodine solution (ROI3), 15 mg=ml iodine solution (PMP) (ROI4), 50 mg=ml calcium solution
(ROI5), 100 mg=ml calcium solution (ROI6), 300 mg=ml calcium solution (ROI7), HE blood 70
(ROI8), HE blood 100 (ROI9), adipose (ROI10), water (ROI11), brain (ROI12), and air (ROI13).
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down with sudden changes. For the α values in between, the
α ¼ 2

3
curve patterns are more similar to that of the α ¼ 1 curves,

whereas the α ¼ 1
2
curves are more irregular and bumpy.

4 Discussions
The standard DI method for DECT-based MMD imposes
sparsity constraint by enforcing a hard ceiling of three on the
number of materials in each voxel and then solves the basis
material components by direct matrix inversion. However, the
three-material constraint is arbitrary and unrealistically rigid.
Moreover, the direct matrix inversion inevitably amplifies the
image noise, as shown in previous publications10 and the current
study. Our proposed DECT MMD framework utilizes a TV
regularization that regulates the decomposition image noise and
uses a sparsity regularization to penalize the number of materials

that are simultaneously present at the same voxel. The soft
sparsity regularization allows the number of basis materials to
vary across different voxels.

The sparsity term is in the form of jxjα (0 ≤ α ≤ 1), where
α ¼ 0; 1

2
; 2
3
; 1 were specifically studied. The sparsity term

reduces to the L1 norm of the x with α ¼ 1 and further reduces
to a constant under the mass and volume constraint. Therefore,
the sparsity term with α ¼ 1 does not promote material sparsity
despite its desirable mathematical properties of being convex.
When α ¼ 0; 1

2
; 2
3
, the corresponding sparsity term has a closed-

form proximal operator, which could be difficult to evaluate
for other values of α. The differences between α ¼ 0, α ¼ 1

2
,

and α ¼ 2
3
are subtle with respect to the decomposition results.

The material penalty term with α ¼ 0 is also referred to as the
counting norm and a mathematically rigorous description of the

Fig. 6 Decomposition component images of (1) 2 mg=ml iodine solution, (2) 5 mg=ml iodine solu-
tion (ROI2), (3) 10 mg=ml iodine solution (ROI3), (4) 15 mg=ml iodine solution (PMP) (ROI4),
(5) 50 mg=ml calcium solution (ROI5), (6) 100 mg=ml calcium solution (ROI6), (7) 300 mg=ml calcium
solution (ROI7), (8) HE blood 70 (ROI8), (9) HE blood 100 (ROI9), (10) adipose (ROI10), (11) water
(ROI11), (12) brain (ROI12), and (13) air (ROI13), decomposed using the proposed framework when
(a) α ¼ 0, (b) α ¼ 1

2, (c) α ¼ 2
3, and (d) α ¼ 1, and (e) the DI method. The last column is the NCC map

of the corresponding decomposition, with each square showing one NCC matrix element.

Fig. 7 (a) The LE: 100 kVp and (b) the HE: 140 kVp CT image of the pelvis patient. The material com-
ponents of the ROIs are bone (ROI1), iodine (ROI2), muscle (ROI3), fat (ROI4), and air (ROI5). The
displaying window is ½0.01; 0.04� mm−1.
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Fig. 8 Decomposition component images of (1) bone (2) iodine (3) muscle (4) fat and (5) air, decom-
posed using the proposed framework when (a) α ¼ 0, (b) α ¼ 1

2, (c) α ¼ 2
3, and (d) α ¼ 1; (e) the DI

method. The last column is the 5 × 5 NCC map of the decomposition in the same row, with each square
showing the corresponding entries in the NCC matrix, where the basis materials are bone, iodine,
muscle, fat, and air, from top to bottom and from left to right.

Table 2 The VF accuracy and diagonality of the NCC matrix for all datasets.

Digital phantom Catphan Quantitative imaging phantom Pelvis patient

VF accuracy α ¼ 0 100.0% 99.9% 100% NA

α ¼ 1= 2 100.0% 99.6% 100%

α ¼ 2= 3 100.0% 99.3% 100%

α ¼ 1 62.1% 45.3% 15%

DI 88.4% 44.1% 51%

Diagonality α ¼ 0 1.00 0.95 1.00 0.95

α ¼ 1= 2 0.99 0.94 0.99 0.89

α ¼ 2= 3 0.99 0.93 0.99 0.87

α ¼ 1 0.33 0.14 0.03 0.53

DI 0.87 0.72 0.54 0.8
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material sparsity. This is reflected in the best quantitative per-
formance achieved with this norm. However, due to its extreme
nonconvexity, it is more challenging to tune the parameters for
convergence to an acceptable local minimum. The sparsity terms
with α ¼ 1

2
and α ¼ 2

3
are better behaving nonconvex functions,

showing more robust performance to optimization parameter
selection.

The nonconvex optimization problem in this study was
solved using an accelerated primal-dual algorithm with line
search proposed in Ref. 12. The primal-dual algorithm reduces

Table 3 The runtime and the hyperparameters used in all cases.

Digital phantom Catphan Quantitative imaging phantom Pelvis patient

η α ¼ 0 0.03 0.006 0.0009 0.003

α ¼ 1= 2 0.05 0.002 0.0009 0.001

α ¼ 2= 3 0.1 0.003 0.0009 0.002

α ¼ 1 0.5 0 0.1 0

λ α ¼ 0 0.05 0.002 0.02 0.0007

α ¼ 1= 2 0.25 0.003 0.005 0.0012

α ¼ 2= 3 0.05 0.0025 0.003 0.0005

α ¼ 1 0.01 0.0005 0 0.0005

γ α ¼ 0 0.01 0.0001 1.00E-05 0.0001

α ¼ 1= 2 0.01 0.0001 1.00E-05 0.0001

α ¼ 2= 3 0.001 0.001 0.001 1.00E-05

α ¼ 1 0.1 0.001 1 0.001

t α ¼ 0 100 1 1 1

α ¼ 1= 2 100 1 1 1

α ¼ 2= 3 100 100 0.5 100

α ¼ 1 100 100 0.01 100

Runtime (s) α ¼ 0 63.4 791.5 861.7 738.8

α ¼ 1= 2 71.2 881.4 489.1 1640.1

α ¼ 2= 3 81.5 1059.4 3542.8 962.1

α ¼ 1 81.3 95.1 323.9 294.7

DI 36.2 133.6 490.1 30.9

Fig. 9 Convergence plots for different α values on the Catphan and the pelvis patient case.
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to the primal-dual hybrid gradient (PDHG) method16,17 when
applied to convex optimization problems. PDHG is one of the
first-ordered algorithms that are well-suited for large-scaled
optimization problems. Other first-ordered algorithms such as
the fast iterative shrinkage-thresholding algorithm,18 which
achieves a convergence rate of Oð 1k2Þ, substantially faster than
the Oð1kÞ convergence rate of the PDHG, will be investigated
in future studies on the nonconvex optimization problems.

5 Conclusions
The proposed method accurately decomposed the DECT phan-
tom and patient images up to 12 basis materials, markedly
reduced cross talk among materials, suppressed decomposition
image noise, and retained image spatial resolution. The pro-
posed method using nonconvex material sparsity penalty outper-
forms convex penalty and the standard DI method.

6 Appendix

6.1 Evaluate the Proximal Operator of ηj · jα for
Different α Values

For α ¼ 0, the proximal operator in Eq. (5) reduces to a hard
thresholding operation:

EQ-TARGET;temp:intralink-;sec6.1;63;494ðProxwF3
ðẑ3ÞÞi ¼

�
ẑ3i; if jẑ3ij ≥

ffiffiffiffiffiffiffiffi
2ηw

p
0; if jẑ3ij <

ffiffiffiffiffiffiffiffi
2ηw

p :

For α ¼ 1
2
, the closed-form solution was proposed by

McKelvey:19

EQ-TARGET;temp:intralink-;sec6.1;63;425ðProxwF3
ðẑ3ÞÞi

¼
� 4

3
sin2
�
1
3
arccos

�
3
ffiffi
3

p
4
u
	
þ π

2

	
; if u ≤ 2

ffiffi
6

p
9

0; if u > 2
ffiffi
6

p
9

;

where u ¼ ηwjẑ3ij−3
2.

For α ¼ 2
3
, the solution of the proximal operator is a root of

the quartic polynomial:

EQ-TARGET;temp:intralink-;e007;63;315x4 − 3ẑ3ix3 þ 3ẑ23ix
2 − ẑ33ixþ

8η3w3

27
¼ 0; (7)

for which the analytic solution exists and could be evaluated
following the work in Ref. 20. The details on the proximal oper-
ator evaluation for α ¼ 2

3
are shown in Algorithm 3.

For α ¼ 1, the proximal operator results in soft thresholding:

EQ-TARGET;temp:intralink-;sec6.1;63;225ðProxwF3
ðẑ3ÞÞi ¼

8<
:

ẑ3i − η; if ẑ3i ≥ η;
0; if jẑ3ij < η;
ẑ3i þ η; if ẑ3i ≤ −η

:

6.2 LAC Values

Table 4 presents the HE LAC and LE LAC values of the basis
materials, which were computed as the average values of the HE
LACs and LE LACs within the ROIs shown on the LE CT
images in Figs. 1, 3, 5, and 7.

Algorithm 3 Proximal operator evaluation ðα ¼ 2= 3Þ, the solution to
Eqs. (5) and (7).

Compute intermediary terms a1, a2, a3, a4:

EQ-TARGET;temp:intralink-;sec6.1;326;704

a1 ≔
8w3η3

27ẑ4
3i

; a2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

16
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
a3
1

27
þ a2

1

256

s
3

vuut
; a3 ≔

5
8
þ 2a2 þ

2a1

3a2
;

a4 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 −

3
8

r

Compute 4 roots r1, r2, r3, r4:

EQ-TARGET;temp:intralink-;sec6.1;326;620

r1 ≔
3
4
þ
�
a4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
8
− a3 −

1
4a4

s ��
2;

r2 ≔
3
4
þ
�
a4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
8
− a3 −

1
4a4

s ��
2

r3 ≔
3
4
þ
�
−a4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
8
− a3 þ

1
4a4

s ��
2;

r4 ≔
3
4
þ
�
−a4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
8
− a3 þ

1
4a4

s ��
2

Pick the root r as the maximum of f0; r1; r2; r3; r4g that satisfies

1. r is a real number

2. 0.5 < r < 1

Output: ðProxwF 3
ðẑ3ÞÞi ¼ r ẑ3i

Table 4 The HE LAC and LE LAC values of the basis materials in all
cases.

ROI
#

Digital
phantom Catphan

Quantitative
imaging
phantom Pelvis patient

LE
(mm−1)

HE
(mm−1)

LE
(mm−1)

HE
(mm−1)

LE
(mm−1)

HE
(mm−1)

LE
(mm−1)

HE
(mm−1)

1 0.059 0.033 0.043 0.038 0.024 0.019 0.059 0.035

2 0.045 0.022 0.029 0.027 0.026 0.020 0.031 0.021

3 0.023 0.017 0.033 0.027 0.029 0.021 0.025 0.019

4 0.001 0.000 0.018 0.017 0.031 0.022 0.020 0.016

5 0.024 0.022 0.027 0.022 0.000 0.000

6 0.003 0.003 0.030 0.024

7 0.043 0.030

8 0.025 0.020

9 0.025 0.021

10 0.021 0.018

11 0.023 0.019

12 0.023 0.019

13 0.000 0.000
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