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Abstract. This work advances the fabrication capabilities of a two-step lithography technique known as nano-
masking for patterning metallic nanoslit (nanogap) structures with sub-10-nm resolution, below the limit of the
lithography tools used during the process. Control over structure and slit geometry is a key component of the
reported method, exhibiting the control of lithographic methods while adding the potential for mass-production
scale patterning speed during the secondary step of the process. The unique process allows for fabrication of
interesting geometric combinations such as dual-width gratings that are otherwise difficult to create with the
nanoscale resolution required for applications, such as nanoscale optics (plasmonics) and electronics. The
method is advanced by introducing a bimetallic fabrication design concept and by demonstrating blanket nano-
masking. Here, the need for the secondary lithography step is eliminated improving the mass-production capa-
bilities of the technique. Analysis of the gap width and edge roughness is reported, with the average slit width
measured at 7.4� 2.2 nm. It was found that while no long-range correlation exists between the roughness of
either gap edge, and there are ranges in the order of tens of nanometers over which the slit edge roughness is
correlated or anticorrelated across the gap. This work helps quantify the nanomasking process, which aids in
future fabrications and leads toward the development of more accurate computational models for the optical and
electrical properties of fabricated devices. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JMM.17.1.013501]
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1 Introduction
The ability to create metallic nanostructures, whether via
top-down or bottom-up methods, has become increasingly
common, if not necessary, for many areas of modern
technological development. Advances in self-assembling
chemical processes, lithographic methods involving acceler-
ating ions and particles, and high-precision deposition and
etch techniques have enabled much of this fabrication
progress.1–5 These advances will enable new and exciting
technologies that take advantage of properties, such as
increased surface area at the nanoscale, high-density arrays
of structures, and even Angstrom-scale features or gaps (also
referred to as slits) among structures.6–9

High-precision nanofabrication may produce a wide
range of structures that are beneficial for their chemical,
mechanical, electrical, optical, or combined properties across
nearly endless applications.10–14 Plasmonic nanostructures,
which interact with light in unique ways depending on the
surrounding materials and device geometry, have been
applied to improved electronics performance and enhance-
ment of optical signals.15–18 In addition to nanostructures
producing electric field enhancement, slits among structures
(specifically those approaching 10 nm and smaller)19 have
been shown to further increase the local field strength.20–24

One limitation of using nanoslits for this type of plas-
monic enhancement in various applications is the difficulty
of reliable fabrication at the sub-10-nm scale, which is below

the resolution limit of most lithography systems, and over
large wafer-scale areas.25 Existing gap-fabrication methods,
such as focused ion beam (FIB) milling,26–28 electromigra-
tion,29–33 mechanical break junctions,34 or photo/electron/
ion beam lithographies,26–28,35,36 have the limitation that they
must create gaps serially. It is crucial to consider the time of
fabrication for a large area of nanostructures or slits when
considering scaling up of the technology for applications
beyond pure basic research. A variety of self-assembly tech-
niques have emerged as promising candidates for large-area
fabrication of high densities of nanogaps, some even with
control over gap sizes.37–44 The ideal fabrication technique
would perfectly couple the dimensional control of methods
such as lithography with the rapid and large-scale, simulta-
neous creation of the desired nanostructures and nanoslits.

Various techniques make use of a sacrificial layer or
layers of material during top-down lithographic processes
to improve the resolution or other properties of the fabrica-
tion. Even during its advent two hundred years ago, the basic
concept of lithography (from the Greek lithos, “stone” and
graphien, “to write”) relied on a sacrificial resist layer.11

Resists sensitive to exposure via an electron beam allow
the user to take advantage of the smaller wavelength, and
therefore, higher diffraction-limited resolution of accelerated
electrons over the ultraviolet light used with photosensitive
resists. Sacrificial layers made from metals, semiconductor
oxides, or other materials used during top-down lithography
processes may provide additional benefits due to specific
material properties not present in lithographic resists,
which are often organic compounds. One benefit of using*Address all correspondence to: Joseph B. Herzog, E-mail: jbherzog@uark.edu
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different materials is the ability to take advantage of different
etchants or solvents that react solely with the desired layer
material. The sacrificial layer may simply protect another
surface from contamination,45 fogging,46 or other nanoscale
defects, or it may be implemented to remove these defects
from the important surface.47 Some imprint-type techniques
rely on a sacrificial material as a carrier from which the
desired structures are removed after processing or this
layer may provide structure to a specific geometric design
during fabrication.48–50

The addition of a sacrificial aluminum layer prior to FIB
milling has been demonstrated to improve the resolution and
edge smoothness in a process called metal-assisted FIB.51

Here, the sacrificial metal layer works to protect the working
material from ion-induced damage and redeposition of
milled working material. This technique was used in the pro-
duction of improved templates for nanoimprint lithography
and two-dimensional plasmonic open-ring nanostructure
arrays with significantly improved absorption due to
increased structural integrity of the patterns. While this
and other sacrificial masking techniques provide the men-
tioned benefits, they do not necessarily directly improve
the resolution of the corresponding nanofabrication process.

This work describes the nanomasking technique, which is
an advanced fabrication method that takes advantage of a
unique lithography and deposition process to create nanoslits
adjacent to metallic nanostructures to produce nanoscale
devices. As we have outlined previously, preliminary results
have demonstrated the ability to simultaneously fabricate
sub-10-nm slits with a density of over 500 million per square
cm.52 Nanomasking has also been used to simultaneously
create gaps in two dimensions, which is not possible with
some serial techniques. An additional benefit of nanomask-
ing is that it has been shown to be capable of simultaneously

fabricating both sub-10-nm slits and adjacent sub-20-nm
metallic structures.52 The nanomasking technique overcomes
this limitation via a unique multistep lithography process to
simultaneously produce many sub-10-nm gaps across a sur-
face. The geometrical control of this technique has been
demonstrated as well, in which gaps can be created adjacent
to sublithography-limited structures with control over their
shapes and sizes. The increased geometric control over nano-
scale structures and slits has resulted in the patterning of met-
allic devices that can be applied to developments in fields,
such as plasmonics, nanoscale and nonlinear optics, photonic
crystals, waveguides, electronics, and microfluidics.53–62

This work improves the nanomasking technique beyond
the previous results by introducing a bimetallic nanoslit
design and demonstrates blanket nanomasking, which
improves upon the original technique by eliminating one
of the lithography steps. Here, we also carefully analyze
and quantify the gap wall roughness and sidewall correlation,
which reveal important insights for device design and
applications.

2 Nanomasking Fabrication
In Fig. 1, we introduce a capability of the nanomasking
technique. Figure 1(a) shows the standard technique, while
Fig. 1(b) shows an additional capability of this technique:
bimetallic nanoslit fabrication. This advanced method of
fabricating two different metals with nanoslit spacing is
an innovative concept and has potential for interesting opto-
electronic applications.63

The standard nanomasking process utilizes a two-step
lithography process to obtain sub-10-nm gaps with a high
degree of control over structure geometries. Figure 1 outlines
the key steps in the process for creating (a) an Au grid struc-
ture and (b) concentric circular patterns utilizing two

Fig. 1 3-D sketch of the nanomasking technique for (a) a grid pattern (two Au evaporations shown) and
(b) bimetallic circular patterns (two evaporation metals shown): (i) result of the first lithography step and
deposition showing structures of Au topped with CrxOy , (ii) result of the second lithography step and
deposition showing secondary metallic structures masked by CrxOy , and (iii) result of etching CrxOy
showing metallic geometries as designed with nanogaps among adjacent structures.
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different evaporation materials.63 After the primary struc-
tures have been patterned via standard electron beam lithog-
raphy (EBL) or photolithography, resist development, and
evaporation, the first step of the nanomasking process
takes place as shown in Fig. 1(i). During the evaporation step
of (i), another material layer is evaporated atop the desired
material for the primary structures; this layer is, crucially, a
metal or other material that will undergo oxidation and
expansion under ambient or controlled conditions. In our
work and, therefore, the sketches shown in Fig. 1, a Cr
layer is used to create this nanoscale mask layer upon oxi-
dation. The overhanging oxidized layer acts to shield the
substrate from further material evaporation during the second
lithography, development, and evaporation step, as shown in
Fig. 1(ii). The second important criterion for choosing a
nanomask layer material is that it must be etchable without
damaging the substrate, any necessary adhesion layer, or the
other desired primary and secondary evaporation materials.
Thus, upon etching the nanomask layer, the resulting pat-
terns consist of the primary and secondary materials sepa-
rated by nanogaps where they overlap as designed, with
the nanogap size being tunable by controlling the oxidation
of the mask material. Example of final structures is shown in
Fig. 1(iii).

Not shown in Fig. 1 but important for fabrication of Au
structures on a Si∕SiO2 substrate is a Ti adhesion layer. In the
work described here, this was typically 1.0 to 1.5 nm of Ti,
with 15 nm of Au as both the primary and secondary evapo-
ration material. Previous work studying the effects of a Ti
adhesion layer on the plasmonic response of an Au nano-
structure to incident light illumination has shown that the
optical enhancement produced by the structures decreases
with increasing Ti layer thickness.64–68 Therefore, for optical
applications, ideally no adhesion layer would be used, but in
the case in which it is required, the smallest possible adhe-
sion layer should be used to preserve the optical character-
istics of the patterned structures. The thickness of the Au
layer has also been found to significantly affect the optical
response of a patterned nanostructure, with and without
nanoslits.69–73 Beyond consideration of the final application,
however, these thicknesses should be chosen such that

the nanomasking effect can still pattern the desired nano-
structures/slits. The thickness of the Cr layer is critical if
tight control over the gap width is desired, as the thickness
affects the lateral expansion of Cr oxidation that occurs upon
exposure to oxygen, affecting the gap width as reported in
work by Fursina et al.74

Nanomasking has successfully demonstrated the fabrica-
tion of Au grid structures on a Si∕SiO2 substrate as designed
and as outlined in Fig. 1. Scanning electron microscopy
(SEM) images were taken of the resulting structures, as
shown colorized in Fig. 2. Different design widths and spac-
ings of the primary nanowires were found to produce differ-
ent widths of the adjacent secondary Au structures. With the
designs producing a resulting primary width of 165 nm, sec-
ondary structures were measured to be 65 nm as shown in
Figs. 2(a) and 2(b). Increasing the primary width to 200 nm
resulted in a secondary structure width of 40 nm [Fig. 2(c)].

The fact that adjusting the primary Au structure width
demonstrates the tunability of the resulting grids via the
nanomasking technique. This will prove useful in future
experiments by allowing designers to strategically pattern
geometries that show optimal enhancement in simulations.
This will accelerate the learning process in determining the
efficiency of the grid structures as SERS substrates, for
example.

The ability of the nanomasking process to fabricate nano-
gaps has been demonstrated as a proof of concept for the
possible large-scale integration of the technique. This work
also demonstrated the simultaneous fabrication of nanogaps
and adjacent nanostructures that are both below the lithog-
raphy resolution limit. This has been described for patterns
aligned on the same center point as with the circle patterns
shown in Fig. 1. Varying the overlap of the two patterns,
however, has the effect of changing the width of the resulting
secondary metal, creating an adjacent sublithography-limited
structure separated via nanoslit.

Figure 3 shows colorized SEM images of the result of
varying the overlap between a square primary pattern and
a rectangular secondary pattern. One larger rectangular
and one square pattern with different amounts of overlap
are shown in Fig. 3(a). The higher magnification image

(a) (b) (c)

Fig. 2 SEM images of Au dual-width grid structures fabricated on a Si∕SiO2 substrate via nanomasking
with different designed structure widths. The width, w1, and spacing of the primary structures control the
width of the adjacent wires, w2. In (a) and (b), w1 ¼ 165 and w2 ¼ 65 nm, and in (c), w1 ¼ 200 nm and
w2 ¼ 40 nm. The structure width standard deviation was found to be 3.03 nm. Scale bars in (a), (b), and
(c) are 100, 250, and 500 nm, respectively.
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(b) shows one case in which the square pattern and rectan-
gular pattern were overlapped so that structures are formed
adjacent to the gap; below the square, a 30-nm metal nano-
structure was formed with features below the typical lithog-
raphy limit of the EBL system used in this work (∼60 nm).
This highlights the capability to use the nanomasking tech-
nique to not only fabricate sub-10-nm slits but also as means
to overcome lithography resolution limits for nanostructures.

Next, we show another advancement in the nanomasking
technique, blanket nanomasking, which eliminates the need
for the secondary lithography, reducing the process down to
only one lithography step. This has the advantage of time and
cost savings in the fabrication process. Here, it is used to
create an array of parallel nanowires with different widths
separated by nanogaps. The process shown in Fig. 4 begins,
again, with patterning a desired geometry using lithography.
This work used EBL, yet photolithography could be utilized
instead for larger structures and rapid patterning. The desired
metal and Cr layer were then deposited, and the Cr was
allowed to oxidize (under ambient conditions in this work).
This is shown in Fig. 4(a) with parallel Au nanowires that
have an oxidized Cr layer overhanging the edge of the Au.
From here, a second deposition of Au is all that is needed to
produce more parallel nanowires, separated from the primary
structures by nanogaps on both sides [Figs. 4(b) and 4(c)].
The deposition covers the entire sample area, and the Cr
mask is still able to produce nanogaps adjacent to the
wires. Figure 4(d) shows colorized SEM images of the
results of this type of fabrication process. The width of
the primary and secondary nanowires could be controlled
in a design such as this to optimize the plasmonic response
to specific wavelengths of incident light.9

Thus, blanket nanomasking has been shown to be capable
of patterning nanogap structures over a large area without the
need for a secondary lithography step. The geometrical
design possibilities are limited compared to the standard
nanomasking process, but blanket deposition over a sample
containing nanostructures may prove useful for economical
mass production of devices. We have shown that the optical
response and plasmonic nature of dual-width nanogap gra-
tings, as shown in Fig. 4(d), can be more beneficial than that
of standard single-width structures for photodetector and
spectroscopy enhancement applications.75,76 These works
help to demonstrate the value of nanomasking fabrication,
which allows for the dual-width grating structure with the
added benefit of nanoslit separation.

3 Nanoslit Analysis
Having demonstrated various geometrical fabrication capa-
bilities via nanomasking, we then analyzed the structure of
nanoslits created by the process. Three high-resolution SEM
images of nanogaps (taken using an FEI Nova Nanolab 200)
were studied to determine the gap widths along the length of
the gap, as well as the correlation between the two gap edges
in each case. The fabrication conditions for the studied pat-
terns included deposition of a 1.5-nm Ti adhesion layer,
15 nm of Au, a 1.5-nm SiO2 separation layer between the
Au and Cr, and 15 nm of Cr allowed to oxidize under ambi-
ent conditions. The gap widths were determined by measur-
ing the full width at half maximum of the SEM image pixel
values along a line drawn perpendicularly across the gap.
The location of each edge point was determined in this man-
ner along a gap length, L, of 100 nm. From these edge loca-
tions, the gap width, average gap width, deviation from the
mean, and edge correlation were calculated. The mean value
across the three gaps was found to be 7.4 nm with a standard
deviation of 2.2 nm. The analyzed gaps are shown in the
SEM images at the top of Fig. 5 with the specific locations
for each gap measurement length, L, labeled. The red plots
shown in the middle row of Fig. 5 display the gap width
deviation from the mean, Δg, versus L. The red histogram
at the right side of Fig. 5 plots the number of occurrences,
N, for gap widths over different Δg ranges.

The blue plots display the population correlation coeffi-
cient, ρ, versus L, with 1 representing complete correlation
and −1 representing complete anticorrelation. From these
data, it was found that there are ranges in the order of
tens of nanometers along each gap over which the secondary
structure edge is highly correlated with the edge position of

(a) (b)

Fig. 3 Colorized SEM images of the results of nanomasking fabrica-
tion for a square primary pattern overlapping a secondary rectangular
pattern: (a) results for two primary pattern sizes and two different
degrees of overlap between primary and secondary patterns and
(b) close-up of the top left structure in (a) showing the resulting nano-
structure width. Scale bars in (a) and (b) are 500 and 100 nm,
respectively.

(a)

(b)

(c)

(d)

Fig. 4 Blanket nanomasking of parallel nanowires. 3-D sketches and
cross-sectional views of (a) the result after the first lithography step,
metal deposition (gold and gray), and Cr layer oxidation (gray), (b) the
secondary metal deposition step, and (c) the resulting parallel nano-
wires separated by nanogaps. (d) Colorized SEM images of the
resulting dual-width Au grid structure. Scale bars are 250 and
500 nm, respectively, and the gap width is ∼8 nm.
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the primary structure. There are also, however, ranges in the
same order of length over which the edges are anticorrelated.
Considering the total gap lengths studied, there does not
appear to be a net correlation among the edge positions
across a given gap. Therefore, with the nanomasking fabri-
cation process, an expected gap width can be patterned with
a relatively high degree of accuracy, but the roughness of the
gap on the secondary structure edge is not necessarily
defined by the primary structure surface roughness.

This corroborates previous discussion of the gap rough-
ness for electrical measurements, which found the secondary
electrodes to be rougher than the primary ones, attributing
this to the added roughness of the CrxOy film.74 The primary
structure edge roughness is due to the resolution of the
lithography process, the resist development, and structure
evaporation. If the secondary structure edge roughness is
not correlated with that of the primary structure, then the
secondary evaporation and the Cr oxidation steps are the
contributing factors of the additional roughness causing
the anticorrelation. Using these measured results to incorpo-
rate accurate edge roughness into future, computational
simulations will be highly valuable for precisely predicting
and designing nanostructure properties. Previous work has
shown that gap roughness can improve plasmonic devices,
and that accurate models are keys to predict device
behavior.77 This work produces better characterization of the
gap width, roughness, and edge correlation, and will be help-
ful in optimizing nanostructures for applications, such as
plasmonic nano-optics for enhanced spectroscopy. We
plan to incorporate these measured structural results into
computational electromagnetic and other simulations, further
aiding in the fabrication design and optimization.

4 Conclusion
A nanomasking fabrication technique has demonstrated the
capability of simultaneous fabrication of sub-10-nm slits and
sublithography-resolution nanostructures. This work
advances the technique by illustrating how hybrid structures
can be created using different materials in each evaporation

step. The width of the secondary structures can be controlled
by the degree of overlap of the two lithography patterns used
in the process, and the sizes of both the nanoslits and nano-
structures can overcome the resolution limit of the electron
beam or photolithography process used. This work advances
the nanomasking method even further by introducing blanket
nanomasking, where no secondary patterning step is
required, as the secondary evaporation simply covers the
entire sample. This has been demonstrated to successfully
eliminate the secondary lithography step from the process
while still producing nanogaps adjacent to multiple struc-
tures on a substrate surface. This is another aspect of the
method which increases the appeal for applications requiring
mass production.

An analysis of the resulting gap structure was conducted,
with the correlation among gap edges studied as well. It was
found that over the length of three gaps fabricated via nano-
masking under ambient Cr oxidation conditions, the average
gap width is 7.4� 2.2 nm. There was found to be no long-
range edge correlation between one side of the gap and the
other, but over shorter ranges (tens of nanometers), some gap
regions displayed significant correlation, and others dis-
played significant anticorrelation. These measured values
and correlation characteristics reveal parameters that can
be useful for predicting nanoscale behavior, enabling
more accurate modeling, design, and optimization of
nanostructures.
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