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Abstract. We show a possibility for soliton formation and superluminality phenomenon at
a femtosecond pulse propagation in a medium with noble nanorods. These effects take place
if a positive phase grating is induced by laser radiation. We take into account the dependence
of two- or one-photon absorption [single-photon absorption (SPA)] on the nanorod aspect ratio
and time-dependent nanorod aspect ratio changing due to nanorods reshaping (or melting)
because of laser energy absorption. We demonstrate that a fast light propagation mode occurs
for various detuning between wave packet carrier frequency and nanorod resonance frequency,
which is a key parameter for practical observation of fast or slow light in a physical experiment.
We also developed analytical approaches for explanation of laser pulse propagation peculiarities
in a medium with nanorods. In particular, in the framework of nonlinear geometric optics
approximation, we derived the laws for the pulse intensity and instantaneous frequency evolution
if a phase grating is induced by laser radiation in a medium with SPA. We also developed an
approximate analytical soliton and derived the chirped soliton amplitude, duration and homo-
geneous shift evolution, carrier frequency changing, and pulse chirp evolution. The results of
analytical consideration are confirmed by computer simulation results. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JNP.11.026003]
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1 Introduction

In recent years, thin films, doped with noble (gold or silver) metal nanoparticles, have attracted
attention as recording media due to their strong nonlinear response resonance to the frequency of
incident optical radiation and electric field polarization, and nanoparticles aspect ratio changing
because of photothermal melting or reshaping.1–6 A large number of investigations deal with the
optical response of a large ensemble of metal nanoparticles embedded into a medium and focus
their attention on nonlinear refractive index changing and the third-order susceptibility changing
in dependence of a nanoparticles concentration.7–12 Obviously, a clarification of the physical
mechanism for nanoparticle optical response dependence on the nanorods aspect ratio and nano-
rods orientation, and local enviroment,13–18 as well as photothermal reshaping of nanorods or
wires at the temperatures less than the bulk melting temperature19–22 are very important ques-
tions. Various mathematical and physical models for an explanation of photothermal reshaping
of nanosized nanoparticles are proposed up to now.19,20,23–25

One of the possible applications of nanorods is their use in data storage devices.1–6 For this
problem, a self-similar mode of laser pulse propagation is of great importance. This is due to the
fact that the laser radiation spectrum distortions, caused by nonlinear refraction and nonlinear
absorption, can induce false recording or writing of information because these processes are
very sensitive to the pulse spectrum. Indeed, nanoparticles reshaping leads to the laser pulse
spectrum changing caused by the pulse chirping and laser energy absorption. Consequently,
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false information writing may take place. Therefore, a mode of laser pulse propagation with
unchanging spectrum is preferable for data processing based on nanorods using.

As it is well-known, a self-similar or soliton mode of laser pulse propagation in homogeneous
and layered media is a subject of numerous studies in recent years.26–34 However, such a laser
pulse propagation mode for a chirped pulse has not been investigated enough yet, despite its
wide appearance in a high intense femtosecond pulse propagation. In our previous papers,35–38

we have investigated a femtosecond pulse propagation in a medium with nanorods under the
conditions of both the nanorod ellipticity (aspect ratio) changing and dependence of two-photon
absorption (TPA) on nanoparticle aspect ratio. In particular, using the density matrix formalism,
we derived the equation set, which describes the femtosecond pulse propagation in the medium
with nanorods reshaping, and obtained some analytical formulas for such propagation.37 In
particular, we analytically derived the laws for laser pulse energy and intensity evolution if
the laser pulse propagates in a medium with TPA or single-photon absorption (SPA) under
the conditions of negligible second-order dispersion (SOD) influence. We also derived the
laws for laser pulse amplitude and aspect ratio evolution in the framework of nonlinear geometric
optics approximation if only a pure amplitude grating is induced by laser radiation in the medium
with SPA. Note that the formulas for laser pulse amplitude evolution, obtained in different
approaches, coincide for a small propagation distance depending on the propagation parameters.
These laws allowed us to discuss the influence of the incident pulse chirp on the pulse center shift
in the area of time increasing or decreasing. Earlier, we investigated the self-similar mode of
laser pulse propagation in homogeneous media with TPA or multiphoton absorption (MPA) and
showed that the appropriate initial frequency chirp is crucial for the self-similar mode
realization.39,40 In Ref. 38, we also discussed, in detail, the pulse chirp role and described a
nonlinear chirp formation due to the light energy absorption and the positive phase–amplitude
grating in the media with nanorods. Investigating the influence of the relation between the nano-
rods absorption spectrum bandwidth and laser pulse spectrum bandwidth on laser pulse spectrum
distortion, we found out that the laser pulse spectrum distortion is really absent under certain
conditions despite the nonlinearity action.36

Our attention in this paper is attracted by the effects of superliminality,41–46 as well as a sol-
iton formation. It should be stressed that earlier37 we showed that a fast light can appear in a
medium with nanorods under the weak optical energy absorption on the pulse dispersion length
while below, we show that the laser pulse propagation modes take place for a wide range of the
problem parameters. In particular, we demonstrate that a fast light propagation mode occurs for
various strengths of positive phase–amplitude grating induced by laser radiation, which corre-
spond to the various detuning between wave packet carrier frequency and nanorod resonance
frequency. Because this parameter is key for a practical observation of fast light in a physical
experiment, we consider its sufficient small value. We also investigate the soliton formation if a
nonlinear absorption is close to the maximal value, which is achieved at absorption resonance of
nanorods in dependence on their aspect ratio. In connection with this, it should be stressed that,
in our previous papers,35–38 we considered a linear dependence of light energy absorption on
nanorod aspect ratio, which is valid far from the absorption resonance.

We derived the laws for the laser pulse energy, intensity, carrier frequency of a wave packet,
and a pulse chirp in the framework of nonlinear geometric optics approximation. However,
we consider laser pulse propagation in a medium with SPA under the conditions of inducing
phase–amplitude grating. We compared the results of analytical consideration with the computer
simulation results and formulated conditions of nonlinear geometric optics approximation
validity for the problem under consideration. To prove our computer simulation results, we
developed the approximate analytical soliton, which allows us to write the soliton amplitude,
duration, and phase evolution along propagation coordinate.

2 Problem Statement

We describe a femtosecond laser pulse propagation in a medium with nanorods (Fig. 1) in the
framework of a semiclassical approach. Therefore, we describe the atomic states using a density
matrix formalism while the electric field strength is described classically in the framework of
a slowly varying envelope. Due to a nanorod strong nonlinear response resonance to the incident
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optical radiation frequency, we restrict our consideration by the two-level medium and take into
account the dependence of light absorption on a nanorod aspect ratio. Thus, a femtosecond
laser pulse propagation along the z-axis can be described in the framework of slowly varying
envelope Eðz; tÞ of wave packet for electric field strength Eðz; tÞ by the following set of
equations:47
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without taking into account its diffraction and with initial and boundary conditions

EQ-TARGET;temp:intralink-;sec2;116;391Eðz ¼ 0; tÞ ¼ E0ðtÞ; Eðz; t ¼ 0Þ ¼ Eðz; t ¼ LtÞ ¼ 0; ρ12ðz; t ¼ 0Þ ¼ 0; Nðz; t ¼ 0Þ ¼ N0;

where Eðz; tÞ is related with the electric field strength by relation

EQ-TARGET;temp:intralink-;sec2;116;340Eðz; tÞ ¼ 1

2
fEðz; tÞ exp½−iðωpt − kpzÞ� þ c:c:g;

where ωp is a frequency and kp is a wavenumber of the laser pulse; vg ¼ ∂ωp

∂kp
is a group velocity

and D2 ¼ 1
2

∂2kp
∂ω2

p
is the SOD of a medium; N ¼ ρ11 − ρ22 is an inversion or population difference

of energy levels 1 and 2; ρ11 and ρ22 are populations of the first and the second energy level of an
atom, respectively; N0 is an equilibrium value of the inversion corresponding to laser radiation
absence (E ¼ 0) and its value varies from −1 to 1,47 N0 ¼ 1 corresponds to passive medium and
the value N0 ¼ −1 corresponds to active medium; ρ12 is a nondiagonal element of the density
matrix; ω21 is the frequency of transition between the energy levels 2 and 1; ν ¼ 2ωp − ω21 is
a frequency detuning between the two photons of laser radiation and the energy level transition
frequency; Tk and T⊥ are longitudinal and transverse relaxation times, respectively; Ns is the
density of atoms; χ1;2 are linear polarizabilities of the medium with atoms in the energy states 1
and 2, respectively, at the frequency ωp

EQ-TARGET;temp:intralink-;sec2;116;150r12 ¼
(
ℏ−1jd21j; one-photon absorptionðk ¼ 1Þ
ℏ−2P

n
d1ndn2∕ðωn1 − ωpÞ; TPAðk ¼ 2Þ ;

where dij is the matrix elements of the dipole moment, k is the number of photons involved in
the absorption process: k ¼ 1 corresponds to SPA, k ¼ 2 − TPA, c is a light velocity, ℏ is the
Planck’s constant, and Lt is a time interval during which we analyze laser pulse interaction with

Fig. 1 Schematic showing of laser radiation interaction with the medium containing nanorods.
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a medium. Ellipticity (aspect ratio) ε of nanorods is determined as ε ¼ L∕W, where W is the
width and L is the length of a nanorod, or equivalently, as ε ¼ a∕b, where a and b are the major
and minor axes of an ellipsoidal nanorod. As a rule, the aspect ratio of nanorods used for data
recording varies from 1.5 to 9.18,48 However, in physical experiments, a nanorod shape transform
to a sphere also realizes. The function fðεÞ describes the dependence of TPA or SPA process on
the nanorod aspect ratio ε.

Using the papers,5,18,47,48 we can write some physical parameters, listed above: the gold atoms
density belongs to the interval Ns ¼ 1.1 · 1017 − 8.6 · 1018 cm−3 (molar concentration of gold
nanoparticles varies from 979 pM to 40 nM),5,48 the incident laser radiation wavelength is
λ ¼ 800 nm; the pulse duration is1–4 100 fs to 6 ns; jr12j ¼ 103 cm · s∕g, the longitudinal
and transverse relaxation times are less than Tk ¼ 10−12 s and T⊥ ¼ 10−13 s.47 The difference

of linear polarizabilities is χ2 − χ1 ≈ 10−25 cm3.
We consider three possible types of the dependence fðεÞ on nanorod aspect ratio

EQ-TARGET;temp:intralink-;e004;116;372fðεÞ ¼ ε − 1; (4)

EQ-TARGET;temp:intralink-;e005;116;337fðεÞ ¼ exp½5ðε − 2Þ�; ε ≤ 2.7; (5)
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The dependence [Eqs. (6) and (7)] follows from Boyd et al.49 shape factor expression for the
absorption coefficient of gold nanorods, calculated in the dipole approximation,50,51 where εm is
the dielectric permittivity of the ambient medium, ε1 þ iε2 is the complex dielectric permittivity
of the nanorod. It should be stressed that the dependence fðεÞ in Eq. (4) adequately approximates
the dependence [Eqs. (6) and (7)] for physical parameters (ε1 ¼ −22.1, ε2 ¼ 1.8 for Au at
λ ¼ 800 nm52 and εm ¼ 3) if the aspect ratio varies from 1 to 2 (Fig. 2, dashed line), whereas
the dependence fðεÞ in Eq. (5) is valid if the aspect ratio changes from 1 to 2.6 (Fig. 2, dotted
line). Obviously, the second dependence is more preferable for a laser pulse interaction with
nanorods near the nonlinear absorption resonance. Below, we use both dependences.

The aspect ratio change due to the nanorods reshaping can be described by the following
equation:

Fig. 2 Dependence f ðεÞ defined by Eqs. (6) and (7) for gold nanorods at the falling radiation with
λ ¼ 800 nm (solid line), or by Eq. (4) (dashed line), or by Eq. (5) (dotted line).
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∂ε
∂t

þ ς̂
1

Tk
ðN0 − NÞ ¼ 0: (8)

The parameter ς̂ characterizes the energy releasing due to the nonradiative relaxation of the
excited energy levels. This part of releasing energy thermalizes and is spent on the nanorods
reshaping. The other part of absorbed energy may be spent on the radiative energy transitions,
corresponding to luminescence, for example.53 Of course, there are other mechanisms of exited
energy levels relaxation. Let us note that one can show that the second term in Eq. (8) depends on
the function fðεÞ if a quasistationary case of a laser pulse interaction with the nanorods occurs
(see below).

Initial condition for the nanorod aspect ratio is

EQ-TARGET;temp:intralink-;sec2;116;604εðz; t ¼ 0Þ ¼ ε0; 0 ≤ z ≤ Lz;

where Lz is the length of a medium containing nanorods. Below, we choose the initial value of
aspect ratio ε0 ¼ 2 for the dependence of Eq. (4) and ε0 ¼ 2.6 for the dependence of Eq. (5).

To simplify Eqs. (1)–(3) by omitting the laser energy absorption dynamics, let us suppose
that the pulse duration is much greater than Tk and T⊥. So, we consider the pulses with duration
more than 500 fs. Such pulses are widely used in practice.3,4 Then, Eqs. (2) and (3) become
stationary, and it is possible to express the medium inversion N and the density matrix non-
diagonal element ρ12 from these equations as functions of the electric field slowly varying
envelope Eðz; tÞ and fðεÞ. We also believe that the energy level transition saturation is absent
[m12fðεÞjEj4 ≪ 1], and the difference between linear polarizabilities χ1 and χ2 (p ¼ 0) can be
neglected. In this case, the following set of dimensionless quasistationary equations for the
slowly varying amplitude of laser pulse and the aspect ratio evolution can be derived for the
system of coordinates that moves with the light pulse velocity37
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is a dimensionless complex amplitude of laser radiation, normalized on the square root from
the maximal intensity (I0) of the incident pulse: A0 ¼

ffiffiffiffi
I0

p
.

Dimensionless parameters for Eqs. (9) and (10) relate to the physical variables as follows:
EQ-TARGET;temp:intralink-;sec2;116;255
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where τp is the incident pulse duration. In accordance with introduced dimensionless variables,
the value of parameter D is equal to unity, D ¼ 1, so that we consider a medium with normal
dispersion for the chosen wavelength of laser radiation. Therefore, SOD leads to a pulse spread-
ing. Nevertheless, we also provide computer simulation for D ≠ 1 to understand the role of
dispersion affect.

Parameter δ0 characterizes laser energy depletion on the pulse dispersion length (the pulse
after propagating a distance equal to the dispersion length is broaden by a factor

ffiffiffi
2

p
).54

Coefficient ξ characterizes laser pulse self-action due to detuning of the doubled carrier fre-
quency of wave packet from the frequency corresponding to the energy transition 2 → 1, if
we consider a TPA, for example. The case of ξ ¼ 0 corresponds to optical pulse propagation
in a medium with pure amplitude grating. It means an influence only of TPA (or SPA) on the
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laser pulse propagation. In the opposite case (ξ ≠ 0), the phase grating is also induced by the
laser radiation. It should be mentioned that the positive sign of the parameter ξ (this case is
named by us as positive grating) corresponds to pulse compression and the laser pulse decom-
pression occurs at the negative sign of this parameter (this case is named by us as negative
grating).

Essentially, to observe the effect under consideration in physical experiments, it is necessary
that the frequency detuning should be less than 0.1ωp, for example. If the laser radiation fre-
quency is equal to ωp ≈ 2360 THz (λ ¼ 800 nm) and a time of transverse relaxation T⊥ is about
10−13 s,47 then the dimensionless detuning parameter θ ¼ ð2ωp − ω21ÞT⊥ ¼ ξ∕δ0 should not
exceed 20 dimensionless units. We stress a value of the parameter θ bellow.

Later in this paper, we provide an analytical consideration and numerical simulation for
Eqs. (9) and (10) in dimensionless variables. We analyze a propagation of incident unchirped
Gaussian pulse

EQ-TARGET;temp:intralink-;e011;116;580Aðz ¼ 0; tÞ ¼ A0ðtÞ ¼ expf−½ðt − Lt∕2Þ∕τ�2g; 0 ≤ t ≤ Lt; (11)

where τ is a dimensionless pulse duration. We also follow the laser pulse center position

EQ-TARGET;temp:intralink-;e012;116;536τcðzÞ ¼
Z

Lt

0

ðt − Lt∕2ÞjAðz; tÞj2dt∕
Z

Lt

0

jAðz; tÞj2dt: (12)

3 Analytical Consideration

3.1 Nonlinear Geometric Optics Approximation for Incident Chirped Pulse
Propagation

Below, we develop the solution of Eqs. (9) and (10) in the framework of nonlinear geometric
optics for a medium with SPA (k ¼ 1), the function [Eq. (4)] for nanorod aspect ratio, and
an incident chirped pulse. This analysis allows us to understand and explain the laser pulse
propagation features. Let us note, this nonlinear geometric optics approach was widely used
earlier with success for analysis of laser beams and pulses propagation in nonlinear media.
As it is well-known, for this approach validity, it is necessary that the small-scale perturbations
in the pulse shape and frequency distribution are absent. In this case, a pulse dispersion length is
defined by the incident pulse duration and SOD influence appears qualitatively on this distance.

Let us represent the complex amplitude as A ¼ ffiffi
I

p
expð−iSÞ, S is a real function describing

a pulse phase and Iðz; tÞ ¼ jAðz; tÞj2 is a pulse intensity. We also introduce the instantaneous

frequency Ωðz; tÞ ¼ ∂Sðz;tÞ
∂t of the optical pulse and the temporal integral of the optical pulse

intensity Pðz; tÞ ¼ ∫ t
0Iðz; τÞdτ, passed through a medium section z until time moment t (this

integral has unit as optical fluence). In nonlinear geometric optics approximation, Eqs. (9)
and (10) are transformed to37
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with the corresponding boundary conditions
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0

Ið0; τÞdτ; Ωð0; tÞ ¼ Ω0ðtÞ ¼
∂Sðz ¼ 0; tÞ

∂t
; (15)

and initial value for the nanorod aspect ratio f0 ¼ ε0 − 1. First terms in Eqs. (13)–(14) describe
evolution of the temporal integral of the pulse intensity and the pulse instantaneous frequency
along the z-coordinate, respectively. The second ones characterize their changing in time.
And the last terms describe laser energy damping and frequency phase changing because of
a nonlinear absorption and phase grating appearance, respectively.
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The solution of the Cauchy problem for Eqs. (13) and (14) can be developed, for example,
by the characteristics method55 using

EQ-TARGET;temp:intralink-;e016;116;711

dz
1

¼ dt
2DΩ

¼ dP

2 δ0
δ̃
f0½expð−δ̃PÞ − 1� ¼ −

dΩ
ξδ̃f0 expð−δ̃PÞIðz; tÞ : (16)

The first equality [Eq. (16)] gives

EQ-TARGET;temp:intralink-;e017;116;653

dt
dz

¼ 2DΩ; (17)

which is the equation for characteristics. Remember that a characteristic is a curve in the plane
ðz; tÞ along which the temporal integral of the pulse intensity Pðz; tÞ and instantaneous frequency
Qðz; tÞ remain constant or change according to ordinary differential equations with respect to
the z-coordinate. Therefore, let us introduce a new variable for time (characteristic)

EQ-TARGET;temp:intralink-;e018;116;568η ¼ t − 2D
Z

z

0

Ωðt; xÞdx: (18)

Obviously, its value is equal to the time t at the input section z ¼ 0 of a medium and remains
constant along the characteristic. Therefore, each of the characteristics is defined by initial time
moment (t ¼ η) in the input section z ¼ 0, and at a constant value ηwe see “shifting” of this time
corresponding to the z-section of a medium. In other words, each of the characteristics defines
one-to-one correspondence between a time moment in the input section and a time moment in
the current section (z) of the medium.

If only a pure amplitude grating (ξ ¼ 0) is induced by a laser radiation, the functionΩðz; ηÞ is
constant along the characteristics, Ωðz; ηÞ ¼ Ω0ðηÞ. Therefore, the relation between coordinates
η and t, z follows from Eq. (17)

EQ-TARGET;temp:intralink-;e019;116;419η ¼ t − 2DΩ0ðηÞz: (19)

This case is investigated in Ref. 37, where a good quantitative agreement of a pulse center
evolution, calculated using both the nonlinear geometric optics and computer simulation, was
shown.

Along the characteristics, Eqs. (13) and (14) take the form

EQ-TARGET;temp:intralink-;e020;116;342
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δ̃
f0fexp½−δ̃Pðz; ηÞ� − 1g ¼ 0; (20)
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dΩðz; ηÞ
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¼ −ξδ̃f0 exp½−δ̃Pðz; ηÞ�Iðz; tÞ: (21)

Thus, evolution of the temporal integral of the pulse intensity can be written in an explicit form

EQ-TARGET;temp:intralink-;e022;116;249Pðz; ηÞ ¼ 1
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ln½1þ expð−2δ0f0zÞfexp½δ̃P0ðηÞ� − 1g�: (22)

From the above equation, the intensity distribution can be derived

EQ-TARGET;temp:intralink-;e023;116;204Iðz; tÞ ¼ dP½z; ηðz; tÞ�
dt

¼ I0ðηÞ
1þ exp½−δ̃P0ðηÞ�½expð2δ0f0zÞ − 1�

∂η
∂t

: (23)

If the characteristics can be approximated by the equation η ¼ t, which means a weak delay in
time caused by a propagation distance because of SOD (D) influence or a pulse chirp (Ω) in-
fluence, it is possible to derive an explicit formula for the instantaneous frequency evolution by
substituting Eqs. (22) and (23) for the pulse energy and intensity distribution into Eq. (21)

EQ-TARGET;temp:intralink-;e024;116;116Ωðz; tÞ − Ω0ðtÞ ¼
ξδ̃

2δ0
½Iðz; tÞ − I0ðtÞ�; Iðz; tÞ ¼ I0ðtÞ

1þ exp½−δ̃P0ðtÞ�½expð2δ0f0zÞ − 1� :

(24)
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We see from Eq. (24) that due to the phase grating, the instantaneous frequency changes with
time and a propagation distance if the pulse shape differs from its incident distribution.

To prove our analytical considerations, in Fig. 3, we compare the computer simulation results
with the curves obtained using Eqs. (17), (22), and (24) for three different values of dimension-
less SOD (D ¼ 10−4, 10−3, 0.1), and ξ ¼ 5, δ0 ¼ 0.05, δ̃ ¼ 5. The dimensionless detuning
parameter for these parameters is θ ¼ 100, which corresponds to the frequency detuning
about 0.5ωp. Maybe this value is big enough for practical application, but it allows us to dem-
onstrate the pronounced validity of the solution obtained in the framework of nonlinear geo-
metric optics. Solving Eq. (17) numerically together with Eqs. (9) and (10), we obtain the
time tzðz; ηÞ for three values of characteristic η, η ¼ ð19.5; 20; 21Þ, for example. [Remember
that each characteristic is defined by time in the input section (z ¼ 0, η ¼ t), so that the
value of η defines a time in the section z of a medium that corresponds to a time moment
in the input section.) For each of the characteristics, we used Eq. (22) to calculate the laser
pulse energy evolution Pðz; ηÞ and Eq. (24) for the instantaneous frequency evolution under
assumption t ¼ η (dashed lines in Fig. 3). This assumption implies that the characteristics

Fig. 3 Temporal integral of the optical pulse intensity Pðz; ηÞ and instantaneous frequency Ωðz; ηÞ
evolution along the characteristics for the three values of η (indicated by figures) at the incident
Gaussian pulse propagation in a medium with SPA and (a) D ¼ 10−4, (b) 10−3, (c) 0.1, ξ ¼ 5,
δ0 ¼ 0.05, and δ̃ ¼ 5. Dashed lines correspond to the curves obtained using Eqs. (17), (20),
and (23).
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are straight lines in the plane ðz; tÞ. This approach is confirmed by computer simulation if the
SOD is quite small or we analyze the trailing edge of the pulse where the front of nanorods
reshaping is absent. Indeed, we see a validation of this statement for D ¼ 10−4, 10−3 or
η ¼ 20, D ¼ 0.1 at the whole propagation distance, or at the distance z < 0.5 if η ¼ 19.5,
21 for D ¼ 0.1. It is important to stress that the characteristics are close to the straight line
for the other part of the propagation distance. The laser pulse energy and instantaneous fre-
quency evolution calculated using Schrödinger equation are depicted as solid lines in Fig. 3.

From Fig. 3, the nonlinear geometric optics approximation is valid along the total propaga-
tion distance if SOD is small [D ¼ 10−4, 10−3, Figs. 3(a) and 3(b)] which is valid for the pulse
with duration of a few picoseconds or greater. In these cases, Eq. (24) describes the instantaneous
frequency evolution quite well [compare the solid and dashed lines in Figs. 3(a) and 3(b)].
If a pulse dispersion is large enough (D ¼ 0.1, that corresponds to the pulse duration of about
0.5 ps in our notations), the nonlinear geometric optics approximation is valid for propagation
distances less than 1 dimensionless unit [Fig. 3(c)], which corresponds to one-tenth of the
dispersion length. We see that the biggest discrepancy between the curves is observed for char-
acteristic η ¼ 19.5. At this time moment t ¼ 19.5, the nanorods reshaping front takes place and,
therefore, a high absorption of laser energy occurs. As a result, the pulse front velocity gradually
decreases and the pulse front undergoes distortions, including the instantaneous frequency while
the pulse back remains unchanged for the larger propagation distance. As a result, a nonlinear
geometric optics approximation is valid near the pulse back at a long propagation distance.

In Fig. 4, the pulse center shift evolution, calculated using Schrödinger equation (solid lines)
and obtained on the basis of Eqs. (12) and (23) under assumption t ¼ η (dashed line), is depicted
for the considered parameters and D ¼ 10−4, 10−3. The best coincidence between the solid and
dashed curves is observed for D ¼ 10−4. For D ¼ 10−3, a self-trapping of laser radiation by
the nanorods reshaping front begins to play a dominant role. As a consequence, a discrepancy
between the curves is noticeable for z > 0.5. If D ¼ 0.1, there is also a significant difference
between the calculated on the base of computer simulation curve and the analytical curve due to
the self-trapping effect. Obviously, it cannot be described without taking into account the SOD.
In this case, the curves coincide only at the propagation distance less than 0.1 dimensionless

Fig. 4 (a) Pulse center shift evolution for the incident Gaussian pulse propagation in a medium
with SPA and (1) D ¼ 10−4, (2) 10−3, (3) 0.1; dashed line corresponds to the curve obtained using
Eq. (21); (b) pulse shapes at z ¼ 0 (dotted line), 5 for D ¼ 10−4 (dashed-dotted line), 10−3 (solid
line); (c) pulse shapes at different sections for D ¼ 0.1; other parameters are ξ ¼ 5, δ0 ¼ 0.05,
δ̃ ¼ 5.
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units as we mentioned earlier. To illustrate self-trapping of laser radiation by the nanorods
reshaping front, we show in Figs. 4(b) and 4(c) the pulse shapes at different section of the
medium. While for D ¼ 10−4, the pulse shape at section z ¼ 5 is similar to the incident pulse
shape, for D ¼ 10−3, the pulse front is self-trapped [Fig. 4(b)]. Self-trapping of the pulse by
the nanorods reshaping front is well seen for D ¼ 0.1 even at section z ¼ 1 [Fig. 4(c)].

3.2 Soliton-Like Solution

In this section, we develop a soliton-like solution for the pulse propagation in a medium with
TPA and nanorods for fðεÞ in Eq. (4). Computer simulation37 has earlier demonstrated a soliton
formation. Therefore, we develop below an approximate analytical solution that clarifies the
main features of soliton appearance (detailed derivation of equations for this solution is presented
in the Appendix). For this aim, let us represent the complex amplitude in a soliton-like form

EQ-TARGET;temp:intralink-;e025;116;579Aðz; tÞ ¼ BðzÞch−1ðζÞ exp½−isðz; ζÞ�; fðz; tÞ ¼ fðz; ζÞ; ζ ¼ ½t − tcðzÞ�∕τsðzÞ; (25)

EQ-TARGET;temp:intralink-;e026;116;545Bð0Þ ¼ B0; tcð0Þ ¼ t0; τsð0Þ ¼ τs0; (26)

and the pulse phase sðt; ζÞ as

EQ-TARGET;temp:intralink-;e027;116;507sðz; ζÞ ¼ aðzÞ þ bðzÞζ þ hðzÞ ln½chðζÞ�; að0Þ ¼ a0; bð0Þ ¼ b0; hð0Þ ¼ h0: (27)

Functions BðzÞ, sðz; ζÞ, tcðzÞ, and τsðzÞ describe the soliton amplitude, phase distribution, pulse
center, and its duration, respectively, with their initial values B0, t0, and τs0 for time moment
t ¼ 0. It should be kept in mind that the soliton appears after the laser pulse propagates along
a certain distance. That is why the initial values of introduced parameters do not coincide with
the incident pulse position.

Parameters a0, b0, and h0 define the incident pulse phase distribution. Function aðzÞ
describes a soliton phase shift along the z-coordinate and is unchangeable in time.
Functions bðzÞ and hðzÞ describe the soliton frequency evolution along the propagation coor-
dinate and a pulse chirp evolution, respectively. As mentioned earlier, we derived self-similar
solutions for laser pulse propagation in the media with nonlinear MPA.39,40 Their pulse phase
distributions are described by the third term in Eq. (27) with the constant coefficient at this term
(hðzÞ ¼ const along the z-coordinate). In this paper, we consider the similar term taking into
account its dependence on the z-coordinate. Moreover, we also consider the linear dependence
of the phase on the coordinate ζ [the second term in Eq. (27)] to describe the phase asymmetric
dependence on time due to the absorption of laser radiation energy by nanorods. We suppose
that the time-independent first term in Eq. (27), as well as the coefficient bðzÞ, depends on
the z-coordinate. Note that the pulse phase distribution under consideration corresponds to
the “classical” soliton phase distribution if the pulse chirp is absent hðzÞ ¼ 0.

The following equation can be obtained by integrating Eq. (10) after substituting Eqs. (4) and
(25) into Eq. (10):

EQ-TARGET;temp:intralink-;e028;116;232fðz; ζÞ ¼ f0 exp½−δ̃B4τsðthζ − 1∕3th3ζ þ 2∕3Þ�: (28)

Dependence [Eq. (28)] describes a nanorods reshaping front under the action of laser radiation,
and the corresponding aspect ratio evolution in time is depicted in Fig. 5. We see a pronounced
reshaping front of the nanorods, and its evolution in time is in a good agreement with computer
simulation results (see Sec. 4).

Substituting Eqs. (25), (27), (28) into Eq. (9), we get after certain transformations (see the
Appendix) the following set of equations:

EQ-TARGET;temp:intralink-;e029;116;128τsðzÞ ¼ τs0 (29)

EQ-TARGET;temp:intralink-;e030;116;973
d ln B
dz

þ δ0f0B2 expð−2∕3δ̃B4τs0Þ½1∕2ðδ̃B4τs0Þ2 þ 2� ¼ 0 (30)
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EQ-TARGET;temp:intralink-;e031;116;534

dtc
dz

− 2
D
τs
b − δ0f0δ̃τ2sB6 expð−2∕3δ̃B4τsÞ ¼ 0 (31)

EQ-TARGET;temp:intralink-;e032;116;498

da
dz

− b
1

τs

dtc
dz

þ D
τ2s

ð1þ b2Þ − ξf0B2 expð−2∕3δ̃B4τsÞ ¼ 0 (32)

EQ-TARGET;temp:intralink-;e033;116;462

db
dz

− h ·
1

τs

dtc
dz

þ 2
D
τ2s

· b · hþ ξf0δ̃τsB6 expð−2∕3δ̃B4τsÞ ¼ 0 (33)

EQ-TARGET;temp:intralink-;e034;116;424−3Dhþ δ0f0τ2s0B
2 expð−2∕3δ̃B4τs0Þ½1∕2ðδ̃B4τs0Þ2 − 1� ¼ 0 (34)

EQ-TARGET;temp:intralink-;e035;116;396Dðh2 − 2Þ þ ξf0τ2sB2 expð−2∕3δ̃B4τsÞ½1 − 1∕2ðδ̃B4τsÞ2� ¼ 0: (35)

The following consequence of Eqs. (34) and (35) is more convenient for analysis

EQ-TARGET;temp:intralink-;e036;116;357δ0h2 − 3ξh − 2δ0 ¼ 0: (36)

In particular, from the above equation, we can get

EQ-TARGET;temp:intralink-;e037;116;315h ¼ 3ξ∕δ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðξ∕δ0Þ2 þ 8

p
2

¼ 3θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9θ2 þ 8

p

2
; (37)

for a medium with absorption. Expression [Eq. (37)] means existence of two frequency chirps
with different signs and the constant value of function hðzÞ. The positive sign corresponds to
the slowing down soliton while the negative sign corresponds to the accelerating soliton. On
the other hand, Eq. (34) defines a relation between the soliton duration and its intensity
(B2) and the pulse chirp (h). These two equations should not contradict each other. We see
from Eq. (34) that the product Dh takes a certain sign depending on the amplitude and duration
of the soliton. So, in a medium with normal dispersion, the amplitude and duration of the soliton

satisfy the inequality B4τs0 >
ffiffiffiffiffiffiffiffi
2∕δ̃

p
for a positive value of h, and the opposite inequality takes

place for its negative value. Obviously, in dependence of this inequality, one of the signs for chirp
can lead to a physically impracticable sign of the soliton intensity. Therefore, if the pulse dura-
tion, intensity and absorption parameter δ̃ are specified, only one type of the solitons occurs.

To write the soliton amplitude BðzÞ in the implicit form, we get from Eqs. (30) and (34)
the following equation:

EQ-TARGET;temp:intralink-;e038;116;116

d ln B
dz

þ Dh
τ2s0

ðδ̃B4τs0Þ2 þ 4

ðδ̃B4τs0Þ2 − 2
¼ 0; (38)

which can be integrated

Fig. 5 Aspect ratio evolution (dependence Eq. (28), solid lines) for various values of δ̃B4τs
(denoted by figures). Dashed line shows the soliton shape described by Eq. (25).
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EQ-TARGET;temp:intralink-;e039;116;735

½ðδ̃B4τs0Þ2 þ 4�3
ðδ̃B4τs0Þ2

¼ ½ðδ̃B4
0τs0Þ2 þ 4�3
ðδ̃B4

0τs0Þ2
exp

�
−16

Dh
τ2s0

z

�
: (39)

Therefore, Eq. (39) together with Eqs. (34) and (37) allows us to obtain the amplitude B,
the pulse chirp, and the pulse duration at each section of the medium.

Taking into account Eqs. (31) and (33), one can write the equation for the pulse frequency
shift evolution

EQ-TARGET;temp:intralink-;e040;116;650

db
dz

¼ ðh · δ0 − ξÞf0δ̃τs0B6 expð−2∕3δ̃B4τs0Þ: (40)

Since the pulse chirp and the pulse amplitude are defined from the above equations, we can
solve this equation and obtain the soliton center tcðzÞ evolution [see Eq. (31)] as well as time-
independent part of the soliton phase aðzÞ evolution [Eq. (32)].

One more important conclusion can be made at the analyzing the following equality,

ðh · δ0 − ξÞ ¼ δ0ðh − θÞ ¼ δ0ðθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9θ2 þ 8

p
Þ∕2, which is valid for the coefficient at the

right hand of Eq. (40). Taking into account that the sign of this coefficient coincides with
the sign of the chirp h, which is given by Eq. (37), we conclude that the pulse frequency
shift bðzÞ increases for a positive chirp and it decreases for a negative chirp regardless of
which of the phase gratings—positive or negative—is induced by laser radiation.

To verify the analytical solution, we discuss in Sec. 4 the computer simulation results and
show that a soliton formation takes place for a wide range of dimensionless absorption amplitude
δ0, from 0.005 to 0.1. Taking this into account, for qualitative analysis providing and further
simplifying of expressions with respect to soliton parameters, we assume negligible absorption
(δ0 ≅ 0). It allows to illustrate the influence of certain physical factors on a laser pulse
propagation. It should be stressed that in the framework of this analysis the pulse chirp is
absent because it appears due to nonlinear absorption as was mentioned earlier. In this case,
Eqs. (30), (31), (34), and (35) transform to simple equations

EQ-TARGET;temp:intralink-;e041;116;401

d ln B
dz

¼ 0; h¼ 0;
1

τs0

dtc
dz

− 2
D
τ2s0

b¼ 0; B2 expð−2∕3δ̃B4τs0Þ½1− 1∕2ðδ̃B4τs0Þ2� ¼
2D

ξf0τ2s0
;

(41)

which have the following solution:

EQ-TARGET;temp:intralink-;e042;116;332BðzÞ ¼ B0; hðzÞ ¼ 0; tcðzÞ ¼ 2
D
τs0

Z
z

0

bðηÞdηþ t0: (42)

Since the soliton amplitude BðzÞ ¼ B0 and duration τsðzÞ ¼ τs0 are constant, we get from
Eqs. (32), (40), and (42) the linear law of the frequency shift changing bðzÞ

EQ-TARGET;temp:intralink-;e043;116;269bðzÞ ¼ b0 − ξf0δ̃τs0B6
0 expð−2∕3δ̃B4

0τs0Þz; (43)

and quadratic dependence of the soliton center tcðzÞ evolution

EQ-TARGET;temp:intralink-;e044;116;224tcðzÞ ¼ t0 þ 2
D
τs0

b0z −
D
τs0

ξδ̃f0B6
0τs0 expð−2∕3δ̃B4

0τs0Þz2; (44)

and cubic dependence of the soliton homogeneous phase shift aðzÞ
EQ-TARGET;temp:intralink-;e045;116;169

aðzÞ ¼ a0 þ
�
D
τ2s0

ðb20 − 1Þ þ ξf0B2
0 expð−2∕3δ̃B4

0τs0Þ
�
z

−
D
τs0

b0ξf0δ̃B6
0 expð−2∕3δ̃B4

0τs0Þz2 þ
1

3
D½ξf0δ̃B6

0 expð−2∕3δ̃B4
0τs0Þ�2z3: (45)

Equations (43)–(45) give the main features of soliton-like solution in the framework of used
approach, namely, the constant value of the amplitude BðzÞ ¼ B0, linear dependence of the

pulse instantaneous frequency − ∂s
∂t ¼ − bðzÞ

τs0
on the z-coordinate, and quadratic dependence of
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the soliton center shift tcðzÞ on the z-coordinate. Equation (43) shows that the pulse frequency
shift bðzÞ decreases along the z-coordinate for a positive phase grating (ξ > 0) and it increases
for a negative phase grating (ξ < 0). The similar dependence takes place for the soliton center
tcðzÞ evolution in a medium with normal dispersion (D > 0). For example, if b0 ¼ 0, the soliton
center shifts into the area of time decreasing (accelerating of pulse) for a positive phase grating
and into the area of time increasing (slowing down of pulse) for a negative phase grating. The
opposite situation occurs in a medium with anomalous dispersion (D < 0).

These features of soliton-like propagation obtained in a very simple way are confirmed by
the computer simulation results discussing in Sec. 4. Of course, the pulse chirp introduces
more complicated features in laser pulse propagation. Let us stress that the “classical” soliton
possesses unchangeable instantaneous frequency.

4 Computer Simulation Results

Below, we discuss computer simulation results for the propagation of an incident Gaussian pulse
(τ ¼ 1) at D ¼ 0.1 in a medium with induced positive phase–amplitude grating (ξ ¼ 5, 2.5,
1.25) for dimensionless nanorods reshaping strength δ̃ ¼ 5 and various values (δ0 ¼ 0.005,
0.05, 0.1) of the laser energy depletion due to TPA. In Sec. 4.1, we present the results for
the dependence fðεÞ in Eq. (4) with the initial value of nanorod aspect ratio ε0 ¼ 2, and in
Sec. 4.2, we discuss the computer simulation results obtained for the dependence fðεÞ in
Eq. (5) with ε0 ¼ 2.6.

It should be noted that the ratio between the dimensionless absorption parameter and the
strength of phase grating θ ¼ ξ∕δ0 (which is the dimensionless frequency detuning) for the
given set of dimensionless parameters takes the values from 103 to 12.5. As was mentioned
in Sec. 2, the value of θ equal 20 corresponds to 0.1ωp if the laser radiation frequency is
equal to ωp ≈ 2360 THz (λ ¼ 800 nm). So, the considering values of θ from 50 to 12.5 cor-
respond to the frequency detuning from ≈0.2ωp to ≈0.05ωp. Nevertheless, we also use large
value of θ to confirm our analytical considerations.

Let us notice that a laser pulse interaction with nanorods near the nonlinear absorption res-
onance, which is described by function fðεÞ in Eq. (5) instead of Eq. (4), does not influence on
the dimensionless frequency detuning θ, but this function type strongly changes the optical
energy absorption and the strength of induced phase grating, and, thus, decrease the propagation
distance at which the effects under consideration can be observed.

4.1 Soliton Formation Far from Nonlinear Response Resonance

As is well seen from Fig. 2, the function fðεÞ in Eq. (4) approximates quite well the dependence
[Eqs. (6) and (7)] for aspect ratio at satisfying the inequality ε ≤ ε0 ¼ 2. At laser pulse propa-
gation in such medium, the incident pulse splits into two subpulses for a wide range of param-
eters. As a rule, a soliton formation and light acceleration take place. In Sec. 4.1.1, the details of
this effect are discussed for small depletion of the laser energy (δ0 ¼ 0.005) and ξ ¼ 5. For this
case, the frequency detuning (θ ¼ 103) is very big for practice at application. Nevertheless,
we consider this case to prove our analytical results developed in Sec. 3.2. In Sec. 4.1.2, we
compare the computer simulation results for various values of a medium absorption and
other parameters of the pulse propagation. Certain sets of them correspond to their achievement
in physical experiments.

4.1.1 Soliton formation under small depletion of laser energy

The features of femtosecond pulse propagation in the medium with fðεÞ in Eq. (4), and D ¼ 0.1

and positive amplitude grating (ξ > 0), induced by laser radiation, and small depletion of laser
energy as well as the physical mechanism for this phenomenon occurrence were discussed in
Ref. 37. Nevertheless, for further consideration, it is important to give briefly these details below.

At the initial stage of propagation, the laser pulse is splitting into two subpulses (Fig. 6).
The left one transforms into a soliton and propagates with high velocity without changing
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its shape for at least 30 dimensionless units [Fig. 6(b)]. The right subpulse also gradually trans-
forms into a soliton. However, its velocity corresponds to the dispersion spreading of the pulse in
a linear medium while the left subpulse velocity exceeds it many times. Due to TPA, the maximal
intensity of both subpulses decreases very slowly at a long propagation distance [Fig. 7(b)]. This
is the consequence of the influence of the nonlinear absorption and a pulse chirp appearance
due to a phase grating and an amplitude grating.

The physical mechanism for light acceleration and soliton formation is as follows.37 A pos-
itive phase grating, which is formed at the pulse propagation, leads to a negative chirp of the
pulse. On the other hand, a positive chirp of the pulse also appears due to the normal dispersion.
As a result, waves with lower frequencies go to the pulse trailing edge and waves with higher
frequencies go to its leading edge. This leads to the pulse compression, the wave packet power
density grows, and the nanorods reshaping increases due to the high intensity waves absorption.
The waves with lower frequencies are concentrated in the left subpulse while the waves with
higher frequencies are concentrated in the right subpulse. So, the pulse splitting into two sub-
pulses occurs, and the left subpulse moves with higher velocity than the right subpulse does if an
optical radiation propagates in a medium with normal dispersion. The further compression of
the subpulses due to the action of positive phase–amplitude grating is restricted by the normal
dispersion action and laser energy absorption. Essentially, after a certain propagation distance,
each of the subpulses is transformed into a soliton and becomes trapped at the boundary between
domains with high and low nanorod aspect ratio.

Fig. 6 (a) Soliton formation and (b) maximal intensity position for both subpulses at the incident
Gaussian pulse propagation for the positive phase amplitude grating ξ ¼ 5 and δ0 ¼ 0.005, δ̃ ¼ 5.
Dashed line in (b) is given by Eq. (47). The top plane in (b) shows subpulse shapes at section
z ¼ 40.

Fig. 7 (a) Pulse center shift along the z-coordinate, calculated using Eq. (12) and (b) maximal
intensity evolution in a medium with the positive phase amplitude grating ξ ¼ 5, δ0 ¼ 0.005,
and δ̃ ¼ 5. Dashed lines correspond to the pulse propagation in a linear medium.

Trofimov and Lysak: Superluminality phenomenon at a femtosecond laser pulse propagation. . .

Journal of Nanophotonics 026003-14 Apr–Jun 2017 • Vol. 11(2)



As for a pulse spectrum evolution, we see that the influence of the positive phase grating
results in a permanent shift of higher frequency waves to the subpulse front, where they are
absorbed by nanorods. So, the spectrum of both subpulses is continuously shifting into the
range of lower frequencies, especially for the high velocity left subpulse (Fig. 8). Therefore,
the velocities of the subpulses grow. Nevertheless, the right subpulse velocity is close to the
velocity of the pulse propagating in a linear medium. This is a consequence of low nanorod
aspect ratio for the right subpulse. As a result, its self-action decreases and the subpulse com-
pression also decreases. However, the right subpulse trapping occurs at a lower peak intensity in
comparison with the left subpulse intensity. Moreover, this subpulse consists of higher frequency
waves in comparison with the left subpulse. That is why its velocity is much smaller than the left
subpulse velocity, though it is bigger than the velocity of the pulse, propagating in a linear
medium. Due to both subpulses accelerating, the center of the whole laser pulse is shifting
permanently in the direction of time decreasing [fast light, Fig. 7(a)].

It should be stressed that the left soliton shape can be approximated quite well by the
function37

EQ-TARGET;temp:intralink-;e046;116;359I0ch−2½ðt − tcÞ∕τap�; (46)

with τap ¼ 0.3, I0 ¼ 0.56, and tc ¼ 152.57. We use these approximation parameters to confirm
the results of our analytical consideration (Sec. 3.2). Let us note that Eq. (35) is valid for
τs0 ¼ 0.345 if the pulse intensity is chosen as I0 ¼ B2

0 ¼ 0.56 and h ¼ 0 (which is valid for
negligible absorption). We see that this pulse duration is in a good agreement with the value
τap ¼ 0.3. The maximal intensity position tcðzÞ for the left subpulse can be approximated
by the following quadratic function [shown by the dashed line in Fig. 6(b)]:

EQ-TARGET;temp:intralink-;e047;116;254tcðzÞ ¼ 215 − 3z − 0.05z2; (47)

that is similar to the corresponding Eq. (44). However, the coefficient at the term z2 in Eq. (44),
calculated for the parameters of the approximation [Eq. (46)], is equal to −0.3, which is six times
bigger than the corresponding coefficient at the same term in Eq. (47). Obviously, this difference
is a consequence of the soliton appearance after the pulse passed the certain distance along
which its shape is not a soliton-like shape. In our point of view, it is essential that the quadratic
dependence of tcðzÞ obtained in Sec. 3.2 for approximate analytical solution, is confirmed by
computer simulation result.

4.1.2 Influence of the pulse energy depletion and the strength of phase grating
on soliton formation

In this section, we demonstrate that the incident pulse splitting into two subpulses, and soliton
formation, and light acceleration, described in Sec. 4.1.1, takes place for a wide range of the

Fig. 8 Spectrum of the pulse, propagating in a medium with the positive phase grating (ξ ¼ 5),
δ0 ¼ 0.005, δ̃ ¼ 5. Dashed line corresponds to the incident pulse spectrum.
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problem parameters with fðεÞ in Eq. (4), and D ¼ 0.1, and positive phase grating, induced by
laser radiation. It is important to stress that we also consider a set of parameters that allows to
observe these effects in practice.

The pulse center shifting along the z-coordinate and maximum intensity evolution for the
pulse energy depletion, which is 10 times greater than that discussed in Sec. 4.1.1, δ0 ¼ 0.05, are
shown in Fig. 9 for three values of phase grating strength, ξ ¼ 5, 2.5, 1. One of these parameters
corresponds to quite realistic values of frequency detuning, θ ¼ 100, 50, 20. For all values of
frequency detuning, the pulse center shifting into the area of time decreasing is well seen. The
shift is the greatest for the strongest phase grating (ξ ¼ 5). Nevertheless, it is less than the pulse
shifting observing for δ0 ¼ 0.005 [compare Fig. 7(a), solid line, and Fig. 9(a), line 5]. Ten times
increasing of laser energy depletion results in three times the maximal intensity decreasing
[compare Fig. 7(b), solid line, and Fig. 9(b), lines 1, 2.5, and 5]. For the biggest strength of
phase grating (ξ ¼ 5), the maximal intensity growth occurs at the initial stage of the pulse propa-
gation as a result of its compression due to the induced nonlinear chirp. Further evolution of
the pulse maximal intensity is characterized by the intensity oscillations. These oscillations are
the result of the competing processes of nonlinear absorption and compression due to the chirp
appearance for the pulse. Indeed, with the pulse intensity growth, the absorption of laser
radiation also grows. This results in the pulse intensity decreasing. Then, the pulse compression
due to the induced nonlinear chirp causes the pulse intensity growth once again and so on. Each
of the next intensity peaks is less than the previous because of the laser radiation absorption.
The intensity oscillations are also well seen for ξ ¼ 2.5.

Let us note that the pulse maximal intensity decreasing depends mainly on the medium
absorption, whereas the pulse center shifting depends mainly on the phase grating strength.
Obviously, the stronger the strength of the phase grating, the stronger the induced chirp of
the pulse, and the greater is the left subpulse velocity.

The incident pulse splitting into two subpulses is depicted in Fig. 10. For the strong phase
grating (ξ ¼ 5), up to the section z ¼ 50, both subpulses are transformed into solitons with equal
maximal intensities [Fig. 10(a)]. For the less strength of phase grating [ξ ¼ 2.5, Fig. 10(b)],
only the left subpulse has a soliton-like form at z ¼ 50, while for ξ ¼ 1 the left subpulse is
not yet separated at all from the right subpulse [minimum value of the pulse intensity between
the subpulses is about 0.003, which is a quite low value, Fig. 10(c)]. The full separation of the
pulses takes place for a much more propagation distance. Nevertheless, its shape is close to
a soliton one, and its shift in the area of time decreasing is about 7.5 ps for a 500-fs incident
pulse [Fig. 10(c), incident pulse is shown by a dashed line].

4.2 Soliton Formation for Strong Nonlinear Dependence of Laser Energy
Absorption

In this section, we discuss the features of soliton formation and light acceleration at the strong
nonlinear dependence of laser energy absorption on the aspect ratio, which occurs near its

Fig. 9 (a) Pulse center shifting along the z-coordinate, calculated using Eq. (12) and (b) maximal
intensity evolution for the positive phase amplitude grating (parameter ξ values are denoted by
figures) and parameters: δ0 ¼ 0.05, δ̃ ¼ 5. Dashed lines correspond to the pulse propagation in a
linear medium.
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response resonance, and forD ¼ 0.1. Consequently, we consider the dependence fðεÞ in Eq. (5).
Strong nonlinear dependence fðεÞ results in rapid intensity decreasing and complicated scenario
of multiple subpulses appearance. Nevertheless, the physical mechanism of the subpulses trans-
formation into solitons and light acceleration, described in Sec. 4.1.1, remains the same.

Figures 11–13 show the pulse center shifting, the maximal intensity evolution, and multiple
subpulses formation for the following sets of parameters characterizing the laser pulse energy
depletion and phase grating strength, respectively, δ0 ¼ 0.05, 0.1, ξ ¼ 2.5, 1.25. The frequency
detuning for these parameters is very realistic, θ ¼ 50, 25, 12.5, corresponding to the frequency
detuning of ≈0.2ωp, ≈0.1ωp, and ≈0.05ωp, respectively, for ωp ≈ 2360 THz (λ ¼ 800 nm).

Due to the positive phase grating, induced by laser radiation and slow waves absorption for
nanorods reshaping, the pulse center shifts into the area of time decreasing for all considered
parameters [Fig. 11(a)]. We see in Figs. 11(b) and 12 that at the initial stage of the laser pulse
propagation, its intensity strongly decreases as a result of laser energy absorption. This decreas-
ing is even stronger than it takes place for the pulse dispersion spreading in a linear medium
[dashed line in Fig. 11(b)]. Moreover, for the previous dependence fðεÞ, the pulse intensity
decreasing was less than it is for the pulse propagation in a linear medium. And even the
pulse intensity increased partly at some sections of the medium [compare Figs. 9(b) and
11(b)]. Therefore, in the case under analysis, an influence of the amplitude grating on the maxi-
mal intensity evolution dominates until the propagation distance z ≤ 15 [see Fig. 11(b)] at which
the solitons appearance takes place.

Strong nonlinear dependence of laser energy absorption on the nanorod aspect ratio results in
a multiple splitting of the incident pulse. As a result, a number of subpulses with soliton-like

Fig. 10 Maximal intensity position for both subpulses at the incident Gaussian pulse propagation
for the positive phase amplitude grating (a) ξ ¼ 5, (b) 2.5, (c) 1 and δ0 ¼ 0.05, δ̃ ¼ 5. The top
figures show subpulse shapes at section z ¼ 50. Dashed line in top figure (c) shows the incident
pulse shape.

Fig. 11 (a) Pulse center shifting along the z-coordinate, calculated using Eq. (12) and (b) maximal
intensity evolution for the positive phase amplitude grating and δ0 ¼ 0.05 (curves 1 and 2),
0.1 (curves 3 and 4), ξ ¼ 2.5 (curves 1 and 3), 1.25 (curves 2 and 4), and δ̃ ¼ 5. Dashed lines
correspond to the pulse propagation in a linear medium.
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Fig. 12 Soliton formation at the incident Gaussian pulse propagation in the medium with param-
eters δ0 ¼ 0.05, (a) ξ ¼ 2.5, (b) 1.25, and δ̃ ¼ 5.

Fig. 13 Maximal intensity position for subpulses appearing at the incident Gaussian pulse propa-
gation for (a) and (b) δ0 ¼ 0.05, (c) and (d) 0.1, (a) and (c) ξ ¼ 2.5, (b) and (d) 1.25, and δ̃ ¼ 5.
The top figures show subpulse shapes at section z ¼ 50. Dashed lines correspond to the pulse
propagation in a linear medium.
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shape, trapped by the nanorod reshaping fronts, occur. Laser energy depletion gradually
decreases the subpulse intensity, which leads to the subpulse velocity decreasing [see Eq. (44)].
So, the later appeared subpulse can travel through the earlier formed subpulse [Figs. 12(a), 13(a),
and 13(c)].

Similar to the case of a linear dependence fðεÞ (far from response resonance on nanorod
aspect ratio), a number of the subpulses and their velocity strongly depends on the phase grating
strength for the dependence fðεÞ under consideration. So, the stronger is the grating strength, the
faster is the subpulses, and the more subpulses are formed up to the section z ¼ 50 (Figs. 12 and
13). Remember that a stronger phase grating strength corresponds to a larger value of the pulse
frequency detuning. So, the frequency detuning for Figs. 12(a) and 13(a) is about 0.2ωp, for
ωp ≈ 2360 THz (λ ¼ 800 nm) while it is about 0.1ωp for Figs. 12(b) and 13(b). The energy
depletion also influences on the subpulses number as well as their intensity; the pulses intensity
and their velocity decrease with energy depletion increasing and the subpulses number is grow-
ing [compare Figs. 13(a) and 13(c); Figs. 13(b) and 13(d)]. Larger values of energy depletion
correspond to smaller values of the pulse frequency detuning, which is about 0.1ωp for Fig. 13(c)
and 0.05ωp for Fig. 13(d). So, we can conclude that the pulse frequency detuning decrease
results in the subpulses velocity decrease, whereas the number of subpulses depends on the
phase grating strength and energy depletion. This demonstrates a fundamental role of nonlinear
absorption and, as a consequence, of a pulse chirp formation for a soliton appearance.

One more important conclusion, following from comparison of Fig. 13, is that it is not nec-
essary to realize high changing of the nanorods aspect ratio in time-area of the soliton formation.
In particular, the nanorods aspect ratio changing in the whole time-area of the pulse does not
exceed 0.4 (from 2.6 to 2.2) for all cases shown in Fig. 13, and it achieves its minimal value 0.15
(from 2.6 to 2.45) for the smallest frequency detuning [Fig. 13(d)]. The aspect ratio changing in
the time-area of each soliton is less than 0.1. For example, for the case shown in Fig. 13(b), the
aspect ratio changing is 0.02 (2.6 to 2.58), 0.04 (2.58 to 2.54), and 0.02 (2.54 to 2.4) in the time-
area of the soliton, starting from the fastest to the slowest. This small aspect changing is very
important for observation of such phenomenon.

5 Conclusions

For various parameters of laser pulse propagation in a medium with nanorods, including various
detuning, we investigated acceleration of light (fast light) in comparison with light propagation
in a linear medium. We considered a linear dependence of laser energy absorption on nanorod
aspect ratio and a strong nonlinear dependence in the vicinity of the maximum of this depend-
ence. Acceleration of light can be accompanied by the pulse splitting for the linear dependence of
laser energy absorption dependence on the nanorod aspect ratio, and a multiple splitting can
take place for a laser pulse interaction with nanorods near the nonlinear absorption resonance.
In all considered cases, acceleration of light is accompanied by soliton formation.

The physical reason for laser pulse acceleration is the pulse chirping due to the induced phase
and amplitude gratings and nanorods reshaping, which leads to nonstationary interaction of laser
radiation with the medium and time-dependent changing of nanorod aspect ratio. As a result,
a soliton-like propagation can take place due to the trapping of laser radiation by nanorod
reshaping fronts.

It is very important to stress that the soliton propagation is accompanied by the minor aspect
ratio changing if the soliton formation occurs for a laser pulse interaction with nanorods near the
nonlinear absorption resonance. This is very important for observation of such phenomenon in
practice because such minor shape transformation takes less time for its realization.

We confirmed our computer results by developing an approximate analytical soliton taking
into account SOD of a medium. This allows us to derive analytical expressions for the soliton
amplitude, duration, and phase evolution, and predict existence of two new types of solitons—an
accelerating chirped soliton and a slowing down chirped soliton —for the same parameters set.

We also developed the analytical solution of the considered problem in the framework of
nonlinear geometric optics approximation. This analysis allowed revealing the role of the
pulse chirp in the light acceleration. In particular, we demonstrated the pulse center shift into
the area of time decreasing if a positive phase grating is induced by laser radiation.
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Appendix
Here, we give a derivation of equations for an approximate soliton-like solution for the pulse
propagation in a medium with TPA and nanorods for fðεÞ in Eq. (4). Representing the complex
amplitude Aðz; tÞ in a soliton-like form [Eq. (25)] and substituting it into Eqs. (9)–(10), we get
the equations with respect to amplitude and phase distribution evolution of the soliton

EQ-TARGET;temp:intralink-;e048;116;670

d ln B
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dz
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dtc
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¼ −δ̃fB4ch−4ζ: (50)

Obviously, the last equation can be integrated

EQ-TARGET;temp:intralink-;e051;116;531fðz; ζÞ ¼ f0 exp½−δ̃B4τsðthζ − 1∕3th3ζ þ 2∕3Þ�: (51)

To find a chirped soliton, we represent the pulse phase sðt; ζÞ as in Eq. (27). Then, substituting
Eqs. (27) and (51) in Eqs. (48) and (49), we get the following equations:
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− ξf0B2ð1 − th2ζÞ exp½−δ̃B4τsðthζ − 1∕3th3ζ þ 2∕3Þ� ¼ 0: (53)

The structure of the above equations is the following: the first four terms in Eq. (52) can be
represented as a linear combination of thζ, th2ζ, ζthζ, and zero power of thζ, while the
first six terms in Eq. (53) can be represented as a linear combination of ζ, thζ, th2ζ, ζthζ,
and zero power of thζ. Let us note that, as it follows from Eq. (52), the nonlinear absorption
causes the soliton amplitude damping. The influence of the pulse chirp depends on the medium
dispersion, the pulse positive chirp (h > 0) in a medium with normal dispersion (D > 0 in our
notations) also causes the soliton amplitude damping due to the pulse spreading while the neg-
ative chirp (h < 0) causes amplitude increasing because of the pulse compression. The opposite
dependence takes place in a medium with anomalous dispersion. The phase grating influences
the pulse phase shift along the z-coordinate aðzÞ, it increases for a positive phase grating and
decreases for its negative value [Eq. (53)]. Of course, this grating defines the pulse chirp in
dependence on the dispersion of the medium.

To write the separate equations for each of the functions aðzÞ, bðzÞ, hðzÞ, τsðzÞ, tcðzÞ, and
BðzÞ in Eqs. (52) and (53), we first expand the exponent in Eqs. (52) and (53) into a power series
with respect to ~δB4τsthζ

EQ-TARGET;temp:intralink-;x1;116;174ð1 − th2ςÞ exp½−δ̃B4τsðthζ − 1∕3th3ζ þ 2∕3Þ�
¼ expð−2∕3δ̃B4τsÞf1 − δ̃B4τsthζ þ ½1∕2ðδ̃B4τsÞ2 − 1�th2ζ þ : : : g:

We need to do this for the explicit definition of nonlinear absorption and refraction affect on
the parameters of the pulse because the exponent in Eqs. (52) and (53) introduces an action in all
functions changing along the z-coordinate. Then, we collect the coefficients for thζ, th2ζ, ζthζ,
and zero power of thζ in Eq. (52), and for this equation validity at each time moment, we require
that these coefficients are equal to zero. As a result, one can write the following equations:
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dtc
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b − δ0f0δ̃τ2sB6 expð−2∕3δ̃B4τsÞ ¼ 0 (55)
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EQ-TARGET;temp:intralink-;e057;116;641

d ln τs
dz

¼ 0: (57)

A few words about the terms in Eq. (54). The second term in Eq. (54) describes the soliton
amplitude changing due to the mutual action of pulse chirp and SOD, whereas the third
term is due to the nonlinear absorption. Obviously, the nonlinear absorption causes the soliton
amplitude damping. However, the pulse chirp can result in the soliton amplitude growing or
decreasing depending on the sign of the product Dh. So, in the medium with normal dispersion
(D > 0 in our notations), a positive chirp causes the soliton amplitude decreasing while a neg-
ative chirp causes the pulse intensity growing. The opposite situation occurs in the medium with
anomalous dispersion. Nevertheless, as we will see below, competition of these two mechanisms
results in the soliton intensity oscillations on certain propagation distance and its further damp-
ing along the z-coordinate. It is essential to stress that the chirp of the appearing soliton is deter-
mined by the soliton amplitude [Eq. (56)], if the expression 1∕2ðδ̃B4τsÞ2 − 1 is positive then
the chirp will be also positive, for the opposite case its sign will be negative. We see that a
pulse chirp appearance (h ≠ 0) is a consequence of the medium nonlinear absorption (δ0 ≠ 0).

Due to a pulse chirp appearance because of the nonlinear absorption, the pulse center always
shifts into the area of increasing time. Action of SOD on the pulse center shifting depends on the
productDb sign. If a caring frequency decreases then the pulse center can shift in the area of time
increasing. For the opposite case, the pulse center can shift in the area of decreasing time. In a
general case, oscillations of the pulse center can take place. Equation (57) implies the constant
value of the soliton duration along the z-coordinate τsðzÞ ¼ τs0. It is the consequence of the
uniqueness of the term with ζthζ in Eq. (52). It should be emphasized that in order to get
the corresponding evolution of this pulse characteristic along the z-coordinate it is necessary
to take into account an additional term in the phase representation Eq. (27).

For writing the equations with respect to functions aðzÞ, bðzÞ, hðzÞ from Eq. (53), we do
the same steps as we made above. As a result, we get the following equations:
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da
dz

− b
1

τs

dtc
dz

þ D
τ2s
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· b · hþ ξf0δ̃τsB6 expð−2∕3δ̃B4τsÞ ¼ 0; (59)

EQ-TARGET;temp:intralink-;e060;116;236Dðh2 − 2Þ þ ξf0τ2sB2 expð−2∕3δ̃B4τsÞ½1 − 1∕2ðδ̃B4τsÞ2� ¼ 0: (60)

Equation (60) together with Eq. (56) determines the pulse chirp in dependence of nonlinear
absorption (δ0, δ̃), phase grating (ξ), and the medium dispersion (D). One has to emphasize
that Eqs. (54)–(57) and Eqs. (58)–(60) must be valid simultaneously, it means that they
should be consistent. This requirement may be satisfied. Indeed, as it was already mentioned,
the inequality 1∕2ðδ̃B4τsÞ2 − 1 > 0 follows from Eq. (56) for a positive product Dh.
Equation (60) gives for this case the inequality Dðh2 − 2Þ > 0, which implies that h2 > 2

for a medium with normal dispersion and positive self-action parameter ξ, for example.
Therefore, these two inequalities can be satisfied simultaneously.

Equation (59) together with Eq. (55) determines the pulse frequency shift along the
z-coordinate and they must be valid simultaneously. This is possible, obviously, if the pulse
chirp is absent (h ¼ 0), for example, then the pulse frequency shift decreases for the positive
ξ and increases for its negative value.
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