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Abstract. Change-detection analysis using bitemporal satellite imagery is a reliable method for
providing and assessing information about flood-induced changes over a wide area in a timely
and cost-effective manner. Accurate radiometric normalization between bitemporal imagery is
a critical component in the application of change-detection techniques to flood mapping because
the accuracy of the change detection is directly affected by the quality of radiometric normali-
zation. A methodology based on multivariate alteration detection (MAD) is introduced as an
approach that enables reliable radiometric normalization of bitemporal very high-resolution
(VHR) images for detecting flood-induced changes. The method uses a weighting function
to adaptively identify weights based on open water features, which are estimated by the nor-
malized difference water index, in the computation of the covariance matrices of the MAD trans-
form. To quantitatively evaluate and test the performance of the proposed method, a comparison
is made between it and the iteratively reweighted (IR)-MADmethod based on statistical tests and
the accuracy of flood change detection. Change vector analysis- and MAD-based change-detec-
tion methods were used for the comparison of the proposed and IR-MADmethods. Experimental
results on KOMPSAT-2 bitemporal VHR images prove that the proposed method produced bet-
ter results than the IR-MAD method in the statistical tests and also increased the overall accuracy
of flood change detection by 1.8% and 12.6% for the two study sites. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.12.026021]
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1 Introduction

Flooding events are the most common natural disaster worldwide, and their frequency may
increase in the future due to global climate change;1 thus, flood monitoring is a national policy
issue of increasing importance, requiring rapid access to accurate information that identifies
changes induced by floods. Multitemporal remote sensing imagery has proven particularly use-
ful in addressing computer-assisted change-detection applications related to flood monitoring.2–4

To precisely extract the flood extent information from multitemporal satellite imagery, it is nec-
essary to carry out radiometric correction, which minimizes the unfavorable impact of radio-
metric differences on change detection caused by variations in imaging conditions. Two types
of radiometric corrections, absolute and relative, are commonly employed to normalize remote-
sensing images for the comparison of multitemporal satellite images.5 The absolute radiometric
correction extracts the absolute reflectance of scene targets at the time of data acquisition. Most
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methods for absolute radiometric correction require the input of simultaneous atmospheric con-
ditions and sensor calibration parameters, which are difficult to acquire in many cases, especially
when historical data are used for change-detection analysis.6 Relative radiometric normalization
is preferred because it does not require in situ atmospheric data at the time of satellite overpass.7,8

This method involves normalizing the intensities of multitemporal images, band-by-band, to
a reference image selected by the analyst. Well-normalized images would appear as if they
were acquired with the same sensor under similar atmospheric and illumination conditions
to those of the reference image.9 In performing the relative radiometric normalization, it is
assumed that the relationship between the radiance obtained by the sensors at two different
times can be approximated with linear functions.10 In this method, the critical issue is determin-
ing suitable time-invariant features that can be used as the basis for normalization.11,12 A variety
of relative radiometric normalization methods, such as pseudoinvariant features (PIFs), dark and
bright set, simple regression, no-change determined from scattergrams, histogram matching, and
multivariate alteration detection (MAD), have been investigated extensively from a theoretical
and practical aspect over the last few decades.13–15 A new method based on PIFs, which includes
automatic selection and optimization of PIFs for the radiometric normalization of multisensor
images16, has been introduced. A hierarchical regression method based on spectral difference has
been proposed recently to reduce the radiation difference for multitemporal images, which
extracts PIFs and optimizes the normalization parameters.17 To generate a mosaic image
using multitemporal airborne thermal infrared images, a polynomial regression method was
recently applied to improve the radiometric agreement between adjacent stitched images.18

A recent study used a parallelization method and iterative MAD to meet the demands of
rapid radiometric normalization of remote sensing images for mosaicking.19

One of the widely used methods is the MAD transformation because it is invariant to linear
transformations of the original image intensities, which indicates that it is insensitive to
differences in atmospheric conditions or sensor calibrations. For this reason, it is considered
a more robust method over traditional methods for change detection.20 The iteratively reweighted
(IR)-MAD was proposed by Nielsen to improve the robustness of the MAD transformation with
the iterative updating of weights.21 The conceptual basis for IR-MAD is simply an iterative
scheme to assign high weights on pixels that exhibit little change over time. The chi-square
distribution is used to model the probability of no-change at every pixel. These probabilities
are then used as weights for each iteration. The IR-MAD procedure is superior to the ordinary
MAD transformation in isolating the no-change pixels suitable for use in relative radiometric
normalization, particularly for data sets that exhibit large seasonal changes. However, the effi-
ciency and robustness of IR-MAD has not yet been verified in data sets that exhibit substantial
changes in land cover due to floods. The objective of this study is to extract reliable PIFs from the
images acquired before and after flooding and provide an accurate radiometric normalization of
a series of bitemporal very high-resolution (VHR) satellite images for flood change detection. To
accomplish this, an MAD-based method that can consider the influence of open water at the study
sites in the computation of the covariance matrices of the MAD transform is presented. The MAD
method aims at finding a linear relationship between two sets of variables. The target image is
therefore corrected by the linear relationship on the PIFs. If image pixels affected by the flood are
extracted as PIFs, linear correlation information on the PIFs becomes unreliable. To accurately
extract the flood-induced change information, it is necessary to carry out radiometric corrections
that minimize the unfavorable impact of radiometric differences caused by image pixels affected by
the flood. To address this issue, the current study uses the normalized difference water index
(NDWI) to estimate open water features in the study site. In addition, the current study develops
a weighting function to adaptively assign weights to the pixels based on the NDWI difference value
for the radiometric normalization of multitemporal images acquired before and after flooding.

2 Image Preparation

In this study, two bitemporal images acquired by the KOMPSAT-2 satellite over the city of
N’djamena, Chad, and the Atbara River, Sudan, were used to evaluate the performance and
feasibility of our methodology.22 The topography of the two regions is relatively flat and

Byun and Han: Relative radiometric normalization of bitemporal. . .

Journal of Applied Remote Sensing 026021-2 Apr–Jun 2018 • Vol. 12(2)



intersected by rivers. In Chad, flooding is a frequent consequence of heavy rainfall caused by
tropical cyclones. Despite serious water shortages, flash floods caused by torrential rainfall and
run-off are common in Sudan. Major floods in Chad and Sudan occurred due to heavy rainfall
episodes on October 12, 2012, and August 2, 2013, respectively. The technical specifications of
the KOMPSAT-2 datasets are described in Table 1. In general, a radiometric difference exists
between the bitemporal images acquired under different view directions at different solar hours.
Such a radiometric difference is clearly observed in the vegetated area on the left bottom side of
the bitemporal images of Chad in Fig. 1. There is also a large time difference between the
bitemporal images for each site, as reported in Table 1.

Bitemporal images just before and after the flood event are more appropriate for this appli-
cation. Unfortunately, bitemporal images with short time differences could not be acquired in
this experiment because these images are generally difficult to obtain due to cloud cover, long
revisiting cycles of high-resolution data gathering satellites, and scarcity of data of appropriate
quality. The images for each site exhibit a high proportion of changes due to significant flooding,
as shown in Fig. 1. As indicted in Table 1, VHR satellite images, such as KOMPSAT-2, provide
a high spatial resolution panchromatic (PAN) image and a set of multispectral (MS) images with
lower spatial resolution but higher spectral resolution. To take advantage of both high spatial and
spectral resolution in the change-detection process, a pan-sharpening process that merges the
PAN and MS images to create a set of MS images with both a high spectral resolution and
enhanced spatial resolution is required. In this study, the Gram–Schmidt adaptive (GSA)
pan-sharpening method was used to generate single high-resolution MS images for both images
of each study site. The GSA method provided by ENVI software comprises two steps: high-
frequency spatial information is extracted from the PAN image and then injected into the resized
MS images.23 The images were taken with different off-nadir look angles, as shown in Table 1.
Therefore, it was necessary to georeference the datasets to a common coordinate system using an
image registration technique. The bitemporal pan-sharpened images of each site were coregis-
tered using the manual image-to-image registration module provided in the ENVI image
processing software; the accuracy of the coregistration evaluated using 10 checkpoints gave
a positional accuracy within a root mean square error of 0.5 pixels for each study site.

Table 1 KOMPSAT-2 satellite data characteristics.

Chad (site 1) Sudan (site 2)

Before the flood
event

After the flood
event

Before the flood
event

After the flood
event

Acquisition date June 22, 2010 October 14, 2012 January 9, 2012 August 9, 2013

Spatial resolution PAN: 1 m PAN: 1 m PAN: 1 m PAN: 1 m

MS: 4 m MS: 4 m MS: 4 m MS: 4 m

Radiometric resolution 10 bit 10 bit 10 bit 10 bit

Number of band
(spectral resolution)

PAN: 1 PAN: 1 PAN: 1 PAN: 1

MS: 4 MS: 4 MS: 4 MS: 4

Wavelength information PAN: 500 to 900 nm

MS 1 (blue): 450 to 520 nm

MS 2 (green): 520 to 600 nm

MS 3 (red): 630 to 690 nm

MS 4 (NIR): 760 to 900 nm

Off-nadir angle (deg) 2 24 −2 −19

Processing level Level 1R Level 1R Level 1R Level 1R
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3 Methodology

The schematic diagram in Fig. 2 illustrates the concept and procedure of the proposed method.
Our procedure for relative radiometric normalization based on the MAD transformation is con-
ducted using the following six steps. (1) Generate the NDWI difference between the two images

Fig. 2 Conceptual workflow of the proposed methodology for relative radiometric normalization:
(a) flowchart of the proposed method and (b) evaluation procedure of the proposed method.

Fig. 1 Pan-sharpened images generated from KOMPSAT-2 satellite images collected before and
after flood events for each site (RGB color composite: 3 2 1), (a–c) Chad and (d–f) Sudan: (a) and
(d) image taken before flood, (b) and (e) image taken after flood, (c) topographic map of the city of
N’djamena, Chad, and (f) topographic map of the Atbara River, Sudan.
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taken before and after the flood event. (2) Compute the weight value using the proposed weight-
ing function defined in Eq. (6), which used the NDWI difference value and near-infrared (NIR)
reflectance. (3) Apply the weight value to the bitemporal image to determine its mean and covari-
ance matrices defined in Eq. (8). (4) Perform canonical correlation analysis (CCA) to construct
the MAD variates. (5) Select pixels with no-change probability [Eq. (10)] exceeding a predefined
threshold as PIFs. (6) Perform the orthogonal linear regression based on the selected PIFs to
normalize the image taken after the flood band-by-band to the one taken before the flood.
In this study, we compared our method with the IR-MAD method to evaluate its performance
and feasibility. The quality of the normalized images generated from each method was evaluated
in terms of the paired t-test and F-tests. The accuracy of flood change detection is also used as
another way to examine the performance of the proposed method. Under the same condition,
change vector analysis (CVA)- and MAD-based change detections are applied to the normalized
images obtained by each method.

3.1 MAD and IR-MAD Transformation

The MAD transformation is an orthogonal transformation based on the CCA between two
groups of variables; the transformation identifies the linear combinations that provide a set
of mutually orthogonal difference images (MAD components) of decreasing variance.20

Let us consider two k-band MS images, F and G, acquired in the same geographical area at
two different times. We can represent the observations in different bands of the multispectral
images as random vectors F ¼ ½F1; F2; · · · ; Fk� and G ¼ ½G1; G2; · · · ; Gk�. The MAD transfor-
mation can be formulated as follows:

EQ-TARGET;temp:intralink-;e001;116;459U ¼ aTF; V ¼ bTG; M ¼ U − V ¼ aTF − bTG; (1)

where U ¼ ½U1; U2; · · · ; Uk�Tand V ¼ ½V1; V2; · · · ; Vk�T are the canonical variates. The MAD
variates M ¼ ½M1;M2; · · · ;Mk�T are the difference images of the corresponding canonical var-
iates. The problem is to determine the linear combination coefficient vectors a and b. This can be
achieved by minimizing the canonical correlation ρ ¼ CorrðU;VÞ, which is equivalent to maxi-
mizing the varianceVarðU − VÞ, subject to the constraintsVarðUÞ ¼ VarðVÞ ¼ 1. Vectors a and
b are found by solving the coupled generalized eigenvalue problems as follows:

EQ-TARGET;temp:intralink-;e002;116;355

X
fg

X−1
gg

X
gf

a ¼ ρ2
X
ff

a ;
X
gf

X−1
ff

X
fg

b ¼ ρ2
X
gg

b ; (2)

where the canonical correlation ρi ¼ CorrðUi; ViÞ, i ¼ 1;2; · · · ; k are the square roots of the
eigenvalues and ai;and bi;are k pairs of eigenvectors.

P
ff and

P
gg are the covariance matrices

of the two images and
P

fg ¼
P

T
gf is the interimage covariance matrix. The solution to the

eigenvalue problem generates new MS images UT and VT . Lower canonical correlations result
in the larger variances inM. The weighting concept in IR-MAD is simply an iterative scheme to
put high weights on observations that exhibit little change over time. For each iteration, the
observations can be given weights determined by the chi-square distribution. Iterations are per-
formed until the largest absolute change in the canonical correlations ρi, i ¼ 1; 2; · · · ; k becomes
smaller than some preset small value.21

3.2 Determining Weights for the Weighted Covariance Matrices

From the above section, it can be seen that the MAD and IR-MAD transformations intrinsically
project data containing the total difference between two images into uncorrelated k components
Miði ¼ 1;2; · · · ; kÞ to detect the difference between them, subject to the constraint of maintain-
ing the total difference information as much as possible. However, these methods lead to an
incorrect projection of the MAD variates in data sets with a large number of pixels in the
scene that change over time, such as flood disaster data sets. The problem arises because
the covariance matrix is greatly influenced by the image pixels affected by the flood; the
PIF extraction result is unreliable to a considerable degree.24 To circumvent this problem
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and achieve reliable extractions of PIFs in such data sets, we devised a weighting function for the
robust estimation of the covariance matrices. The basic concept for calculating weights is to
assign a small weight value to pixels over open water features in calculating the covariance
matrices in Eq. (2) because these pixels have a high probability of belonging to the area affected
by the flood. In this study, the NDWI is employed to generate weights according to the presence
of an open water feature in the image pixel. The NDWI has been developed to delineate open
water features in remotely sensed digital imagery.25,26 There are two popular versions of NDWI,
one using NIR and short-wave infrared (SWIR) bands proposed by Gao25 and the other using
green and NIR bands proposed by McFeeters.26 In this study, we used the NDWI version pro-
posed by McFeeters because the KOMPSAT-2 satellite does not provide SWIR band data. The
NDWI uses reflectance information from the green and NIR spectral bands. The open water
condition influences the interaction between these two spectral regions. The NDWI is expressed
as follows:

EQ-TARGET;temp:intralink-;e003;116;580NDWI ¼ BGreen − BNIR

BGreen þ BNIR

; (3)

where BGreen is the spectral reflectance in the green region of visible spectrum and BNIR is the
spectral reflectance in the NIR region.

Water usually has higher green reflectance than NIR reflectance. As a result, the NDWI value
generally takes positive values in regions with open water within the range ½−1; 1�. In this study,
we propose a weighting function that allows different weights to be assigned according to
the NDWI difference value and NIR reflectance. The proposed weighting function consists of
the product of two simple probability functions. In the first function, which is designed using
Gaussian function, each pixel is weighted according to the difference in NDWI value. The
function is defined as follows:

EQ-TARGET;temp:intralink-;e004;116;428ω1ðdÞ ¼ exp

�
−
d2

2σ

�
; (4)

where d is the difference in NDWI values before and after the flood at a pixel and σ is the
standard deviation that determines the height and width of the bell-shaped curve. A large stan-
dard deviation creates a bell that is short and wide while a small standard deviation creates a tall
and narrow curve. This function assigns higher weights when the differences in the NDWI values
are small. In the second function, which is designed using a logistic function, each pixel is
weighted according to the NIR reflectance value of the image taken after the flood. The function
is defined as follows:

EQ-TARGET;temp:intralink-;e005;116;299ω2ðrÞ ¼
1

1þ exp½−kðr − r0Þ�
; (5)

where r is the NIR reflectance value of the image taken after the flood event, k controls the
steepness of the sigmoid curve, and r0 is the midpoint of the sigmoid curve at which the cur-
vature changes from concave to convex. In this study, this midpoint was set to the third quartile
of the NIR reflectance values in the NIR image, where the third quartile is the central value
between the median and the highest value of the data set. This function assigns higher weights
when the NIR reflectance is high. The final weighting function made with these two functions is
defined as follows:

EQ-TARGET;temp:intralink-;e006;116;171ωðd; rÞ ¼ ω1ðdÞ × ω2ðrÞ ¼ exp

�
−
d2

2σ

�
×

1

1þ exp½−kðr − r0Þ�
: (6)

We performed the experiment using various values of standard deviation σ and steepness k to
find the most acceptable value of these parameters. The best results were acquired when we set
the standard deviation to 0.0001 and the steepness to 3 in the Chad dataset (site 1). The same
parameters were applied to the Sudan dataset (site 2) to check whether these parameters are
suitable for the extraction of PIFs.
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These weights enter the calculation of the mean and covariance matrix as feature vectors
during the MADmethod procedure. For example, the covariance matrix

P
ff in Eq. (2) is simply

recalculated considering the weights as follows:

EQ-TARGET;temp:intralink-;e007;116;699Fi ¼
P

N
j¼1 ωjFjiP
N
j¼1 ωj

; (7)

where Fi is the weighted mean value of Fi and N is the total number of pixels in an image.
The elements Sik of the weighted covariance matrix are calculated as follows:

EQ-TARGET;temp:intralink-;e008;116;627Sik ¼
P

N
j¼1 ωj

ðPN
j¼1 ωjÞ2 −

P
N
j¼1 ω

2
j

XN
j¼1

ωjðFji − FiÞðFjk − FkÞ: (8)

If all the elements of vector ω are set to 1, the proposed method is identical to the original
MAD transformation.

3.3 Relative Radiometric Normalization Using MAD Combined with NDWI

The most important step is the determination of suitable PIFs in the relative radiometric nor-
malization because the normalization performance can vary depending on the quality and quan-
tity of PIFs selected from the image. As described in Sec. 3.1, the MAD variates are uncorrelated
(orthogonal) and invariant under affine transformations of the bitemporal images. This
invariance can be exploited to determine PIFs suitable for relative radiometric normalization.
To choose the PIFs using the MAD transformation, the random variable Z represents the
sum of the squares of the standardized MAD variates

EQ-TARGET;temp:intralink-;e009;116;430Z ¼
Xk
i¼1

�
Mi

σMi

�
2

; σ2Mi
¼ varðMiÞ ¼ varðUi − ViÞ ¼ 2ð1 − ρk−iþ1Þ; (9)

where σMi
are the standard deviations of the MAD variates. Because no-change observations

are normally distributed and uncorrelated, the realization z of the random variable Z should be
chi-square distributed with K degrees of freedom. This allows us to define the no-change
probabilities as

EQ-TARGET;temp:intralink-;e010;116;332Prno-change ¼ 1 − Pχ2;KðzÞ; (10)

where χ2 represents the chi-square distribution and Prno-change is the probability that a sample z
drawn from the chi-square distribution could be that large or larger. A small z implies a high
probability of no-change. The no-change probabilities of the pixels derived by this method
can be used to determine suitable PIFs from the time-series images. To conduct the radiometric
normalization, those pixels that satisfy Prno-change > t are chosen as the PIFs. In this study, the
decision threshold twas set to 0.99, which is the same threshold as in the original MAD designed
by Nielsen.21 The calibration parameters for radiometric normalization were determined using
the orthogonal linear regression and the selected PIFs.24

4 Experimental Results and Discussion

4.1 Results of Relative Radiometric Normalization

To test the performance of the proposed method, a comparison with the IR-MAD method was
conducted. The PIFs obtained from each method were used to perform an orthogonal regression
for relative radiometric normalization. To compare these two methods, we visually inspected the
exact geometrical position of the PIFs selected in each method. The PIF extraction results
obtained using these two methods are shown in Fig. 3. The pixel positions of the PIFs are
shown on the flooded images with green arrows for visual inspection in Fig. 3. As shown
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in Fig. 3, the number of the extracted PIFs using the IR-MAD method is smaller than that of the
proposed method, and the majority of extracted PIFs using the IR-MAD method are located in
the area affected by flooding, which are unsuitable for radiometric normalization. The proposed
method produces relatively more PIFs in the nonflooded area, with more homogeneous surface

Fig. 3 The PIF extraction results using different methods for each site, (a, b) Chad and (c, d)
Sudan: (a) IR-MAD result (150 points), (b) proposed method result (143 points), (c) IR-MAD result
(496 points), and (d) proposed method result (1080 points).

Fig. 4 Comparison of orthogonal regression analysis, band-by-band, using the PIFs obtained by
each method for the Chad scenes: (a) the results of the IR-MAD method and (b) the results of
the proposed method.
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characteristics compared with the IR-MAD methods. This improvement is due to using the pro-
posed weighting method in calculating the covariance matrices for the MAD transformation.

The selected PIFs were subsequently used to normalize the target image to the reference
image using orthogonal linear regression; we designated the image taken before the flood event
as the reference image and the image taken after the flood event as the target image to be nor-
malized. Figures 4 and 5 show the results of orthogonal regression analysis using the PIFs

Fig. 5 Comparison of orthogonal regression analysis, band-by-band, using the PIFs obtained by
each method for the Sudan scenes: (a) the results of IR-MAD method and (b) the results of
the proposed method.

Fig. 6 Radiometric normalization images (RGB color composite: 3 2 1) obtained for each site
(a, b) Chad and (c, d) Sudan: (a, c) IR-MAD method and (b, d) proposed method.
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obtained by each method for each site. As shown in Figs. 4 and 5, it is clear that the proposed
method produced a better result than the IR-MAD method in terms of the linear relationship for
both sites.

Figure 6 shows the radiometric normalized images generated from the orthogonal linear
regression using the PIFs selected from each method. In the Chad scenes, the normalized
image using the IR-MAD method provides a visually bad result, as shown in Fig. 6(a);
there are clear radiometric distortions throughout all regions when compared with the proposed
method. This difference is due to the quality of the extracted PIFs; most of the extracted 150 PIFs
in the IR-MAD method are located in the area affected by flooding, as shown in Fig. 3(a), which
are unreliable PIFs for the radiometric normalization.

4.2 Discussion Using Statistical Evaluation Method

To quantify the comparison between the proposed and IR-MAD methods, the quality of the
normalized images generated from each method was evaluated in terms of the paired t-test
and F-tests for equal means and variance, respectively. In general, paired t-test values close
to zero and F-test values close to one indicate good matches. In both statistical tests, for a sig-
nificance level of 0.05, P-values close to one are desirable. The null hypothesis of equal mean
and variance is accepted when the P-values are greater than a predefined significance level,
which is traditionally set to 0.05.24 The statistical comparisons of hold-out test pixels for the
normalized images obtained from the two methods for each site are listed in Tables 2–5.
The hold-out test pixels are those that are not used in the estimation of orthogonal regression
parameters and are only used for the assessment of accuracy. Figure 7 shows hold-out test pixels
to estimate the accuracy of each method for each site.

Comparing data for the Chad scenes (Tables 2 and 3), it is clear that the proposed method
produced a better result than the IR-MAD method in both statistical tests; none of the P-values
for bandwise tests for equal means and variance are acceptable in the IR-MAD method results.
In the Sudan scene, as shown in Tables 4 and 5, the proposed method also generated a better
result than the IR-MAD method in both statistical tests; the difference between the reference and
normalized mean is much smaller than that of the IR-method. From these results, the weighting
scheme in the proposed method allowed a more precise identification of PIFs prior to the relative
radiometric normalization for bitemporal images exhibiting a significant amount of change due
to flooding.

Table 2 Comparison of means and variance for 44 hold-out test pixels, with paired t -tests and
F -tests for equal means and variances, and normalization using the IR-MAD method for the Chad
scenes.

Band 1 Band 2 Band 3 Band 4

Reference mean 694.522 706.545 510.523 564.886

Normalized mean 719.765 756.451 571.468 574.684

Difference 25.243 49.905 60.946 9.798

t -stat 5.685 7.096 7.729 2.432

P-value 0.000 0.000 0.000 0.019

Reference var. 596.674 1822.858 3608.023 973.312

Normalized var. 38.317 19.926 68.403 25.953

F-stat. 0.064 0.011 0.019 0.0267

P-value 0.000 0.000 0.000 0.000
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4.3 Results of Change Detection

Because the significance of the statistical evaluation using the paired t-test and F-tests crucially
depends on the test pixels, it is difficult to conclude, using these tests alone, that the proposed
method is better than the IR-MAD method. Another approach to assessing the performance of
the proposed method is to compare the accuracy of flood change detection using the proposed
method with that using the IR-MADmethod. Under the same conditions, changes are detected in
the radiometric normalized images produced from each method. Several change-detection meth-
ods have been proposed for remote sensing change detection.27–29 Among them, we used the
CVA- and MAD-based change detection-methods for flood change detection.

The MAD approach, originally designed by Nielsen et al.,20 can be used directly for change
detection. The thresholds for deciding between change and no-change can be set in terms of the
standard deviation about the mean for each MAD component. All pixels in an MAD component
Mi whose intensities are within �2σMi

, where σMi
is the standard deviation, are no-change

Table 3 Comparison of means and variance for 44 hold-out test pixels, with paired t -tests and
F -tests for equal means and variances, and normalization using the proposed method for the
Chad scenes.

Band 1 Band 2 Band 3 Band 4

Reference mean 694.522 706.545 510.523 564.886

Normalized mean 697.139 708.777 513.030 567.389

Difference 2.616 2.231 2.507 2.503

t -stat 1.103 0.712 0.863 1.199

P-value 0.276 0.480 0.393 0.237

Reference var. 596.674 1822.858 3608.023 973.312

Normalized var. 422.146 1476.537 3352.496 846.695

F-stat. 0.708 0.810 0.929 0.869

P-value 0.261 0.493 0.811 0.649

Table 4 Comparison of means and variance for 326 hold-out test pixels, with paired t -tests and
F -tests for equal means and variances, and normalization using the IR-MADmethod for the Sudan
scenes.

Band 1 Band 2 Band 3 Band 4

Reference mean 562.349 578.798 428.497 442.193

Normalized mean 576.394 601.476 448.912 447.687

Difference 14.045 22.678 20.415 5.494

t-stat 13.785 15.198 16.58 4.519

P-value 0.000 0.000 0.000 0.000

Reference var. 563.656 1593.424 1815.285 2008.267

Normalized var. 35.013 194.875 542.063 708.274

F-stat. 0.062 0.122 0.299 0.353

P-value 0.000 0.000 0.000 0.000
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pixels. The final change pixels are obtained by applying a union operator on the change-
detection results of each MAD component.

The CVA is one of the simplest and most widely used change-detection methods in the
literature.30 The CVA is applied to the radiometric normalized image generated from each
method. The basis for CVA is that a particular pixel with different values over time resides
at substantially different locations in the feature space. The spectral change vector (SCV) is
calculated from the vector difference of spectral feature vectors associated with pairs of corre-
sponding pixels in two images acquired at two different times.31 The magnitude of SCV is used
to establish a simple criterion for identifying the changed area.32 Due to the properties of the
magnitude operator, it is possible to assert that pixels showing a magnitude higher than a given
threshold value are changed, while pixels showing a magnitude lower than the threshold value
are unchanged.33 This method performed best using Landsat TM data in a comparative evalu-
ation of change-detection techniques for detecting areas associated with flood events.34

A threshold, indicating the changed area, needs to be determined on the SCV magnitude
image. Selecting an appropriate threshold value to identify change is difficult.35 Too low
a threshold will exclude areas of change, and too high will include too many areas of change.
In the literature, several threshold-selection methods have been proposed for identifying the
threshold value, which separates changed areas in bitemporal satellite images.36 Among

Fig. 7 Hold-out test pixels used for statistical comparison labeled in red: (a) Chad (44 pixels) and
(b) Sudan (326 pixels).

Table 5 Comparison of means and variance for 326 hold-out test pixels, with paired t -tests and
F -tests for equal means and variances, and normalization using the proposed method for the
Sudan scenes.

Band 1 Band 2 Band 3 Band 4

Reference mean 562.349 578.798 428.497 442.193

Normalized mean 561.959 577.956 427.051 442.193

Difference −0.391 −0.841 −1.446 −0.128

t-stat −0.732 −1.187 −1.631 −0.131

P-value 0.465 0.236 0.104 0.896

Reference var. 563.656 1593.424 1815.285 2008.267

Normalized var. 657.418 1793.870 2166.284 2518.705

F-stat. 1.1663 1.126 1.193 1.254

P-value 0.1659 0.286 0.112 0.042
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them, we applied the expectation maximization (EM)-based thresholding method to the SCV
magnitude image to assign each image pixel to one of two opposing classes: changed and
unchanged areas. The EM-based threshold algorithm requires estimates of the statistical param-
eters of classes, i.e., the class prior probabilities and class-conditional probabilities. The esti-
mated class-statistical parameters are then used with the Bayes decision rule for minimum-
error in the automatic determination of an optimal decision threshold.37 Figure 8 shows the
change-detection results obtained by the MAD-based change-detection method for each site;
whereas, Fig. 9 shows the change-detection results using the CVA-based change-detection
method for each site. In general, the results from both change-detection methods suggest
that change has been overdetected, as shown in Figs. 5 and 6.

4.4 Discussion Using Change-Detection Accuracy

To evaluate and compare the proposed algorithm, reference images for each site were produced
from the original image by manually digitizing the flooded areas,38 as shown in Fig. 7. In the
construction of the reference image, we only considered the visually salient flooded area along
the river; it is challenging to visually identify all changes in urban residential districts, and we
were focusing on changes due to floods. By comparing this reference image with the results from
each change-detection method, we obtained a measure of detection accuracy. Comparisons
between the reference and the results from each change-detection method were quantified
using constructed error matrices; commission error (CE), omission error (OE), and overall accu-
racy (OA) were calculated to assess the whole accuracies of each result image. The OA is the sum
of the correctly classified pixels divided by the total number of reference pixels.39

Fig. 8 MAD-based flood extraction results using MAD components produced using (a, c) the IR-
MAD method and (b, d) the proposed method, for sites in (a, b) Chad and (c, d) Sudan. Red
represents correctly extracted flood pixels, blue indicates CE, and yellow indicates OE.
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Table 6 shows detailed quantitative results using the MAD-based change-detection method
for both sites. When visually compared with the reference image from each site, there are many
omissions in the results for both sites, but the OEs of the proposed method are slightly lower than
those of the IR-MAD method, as shown in Table 6. From Table 6, it is also observed that the
proposed method yields better accuracy in measuring OA for both sites. Table 7 represents
detailed quantitative results using the CVA-based change-detection method for both sites.
The CVA-based method provided a better visual and quantitative result than the MAD-based
method for both sites.

Results obtained for both sites with both the IR-MAD and proposed methods were consistent
with actual flood changes. Upon close inspection of the change-detection results using the refer-
ence images (Fig. 10), the flood extent extracted using the IR-MAD method overestimated
changes in comparison to the results from the proposed method. In the results from the IR-
MADmethod, more pixels were identified as flooded areas than were identified by visual inspec-
tion; there was also a considerable CE, particularly in the forest and permanent water body
region, relative to the proposed method. As shown in Table 7, the proposed method produced
a better result than the IR-MAD method with an OA of 83.62% and 75.91%, respectively, for
each site. The OA of the proposed method is higher by 1.8% and 12.6% for the two sites than the
OA of the IR-MAD method. These results demonstrate the feasibility and effectiveness of
employing the NDWI difference and NIR reflectance for the relative radiometric correction
of remote sensing imagery to extract flooded areas. The proposed method has the advantages
of not only being able to extract more precise PIFs but also performing well in differentiating
the flooded area in comparison to the IR-MAD method. Our method is computationally efficient
since it does not require an iterative procedure. However, there are disadvantages in that it

Fig. 9 CVA-based flood extraction results using the normalized images resulting from the (a, c) IR-
MAD and (b, d) proposed methods, for (a, b) Chad and (c, d) Sudan. Red represents the correctly
extracted flood pixels, blue indicates CE, and yellow indicates OE.
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focuses only on flood-related issues and is sensitive to the NIR band because it is designed based
on the NIR band of the post-flood image.

In future work, to increase the robustness of the proposed method, we will explore new
strategies to fuse flood-related information of VHR synthetic aperture radar (SAR) images
when SAR images of the same area acquired during and after the flood are available.

5 Conclusions

In this study, we presented a new approach combining MAD transformation and open water
features for the relative radiometric normalization of bitemporal VHR satellite imagery. The
proposed method constructs a weighting function based on differences in NDWI and NIR reflec-
tance; this function is used to estimate the covariance matrix for the MAD transformation and
reliably extract PIFs from images acquired at different times. The effectiveness of this approach
was verified with the experimental results, showing the extraction of PIFs from two KOMPSAT-
2 VHR satellite images acquired before and after flooding. To test the performance of
the proposed approach, the results were compared with those of IR-MAD-based radiometric
normalization techniques. Both statistical tests and actual performances of the flood change

Table 6 Accuracy assessment results of the MAD-based change-detection method for each site:
(OA) overall accuracy, (CE) commission error, (OE) omission error, (F) flood (in pixels), and (NF)
no flood (in pixels).

Classified change

Reference change

F NF Sum CE (%)

Chad (site 1) IR-MAD F 1332 20,138 21,470 93.8

NF 102,326 126,204 228,530 44.8

Sum 103,658 146,342 250,000

OE (%) 98.7 13.7

OA = 51.01%

Proposed method F 3590 22,313 25,903 86.14

NF 100,068 124,029 224,097 44.6

Sum 103,658 146,342 250,000

OE (%) 96.5 15.2

OA = 51.04%

Sudan (site 2) IR-MAD F 44,820 103,149 147,969 69.7

NF 189,287 662,744 852,031 22.2

Sum 234,107 765,893 1,000,000

OE (%) 80.8 13.4

OA = 70.75%

Proposed method F 89,421 93,269 182,690 51.1

NF 144,686 672,624 817,310 17.7

Sum 234,107 765,893 1,000,000

OE (%) 61.8 12.1

OA = 76.20%

Byun and Han: Relative radiometric normalization of bitemporal. . .

Journal of Applied Remote Sensing 026021-15 Apr–Jun 2018 • Vol. 12(2)



Fig. 10 Hand-marked reference images indicating regions with changes due to flooding labeled in
red: (a) Chad and (b) Sudan.

Table 7 Accuracy assessment results of the CVA-based change-detection method for each site:
(OA) overall accuracy, (CE) commission error, (OE) omission error, (F) flood (in pixels), and (NF)
no flood (in pixels).

Classified change

Reference change

F NF Sum CE (%)

Chad (site 1) IR-MAD F 93,079 34,933 128,012 27.2

NF 10,579 111,409 121,988 8.7

Sum 103,658 146,342 250,000

OE (%) 10.2 23.8

OA = 81.79%

Proposed method F 89,839 27,116 116,955 23.18

NF 13,819 119,226 133,045 10.39

Sum 103,658 146,342 250,000

OE (%) 13.3 18.5

OA = 83.62%

Sudan (site 2) IR-MAD F 220,160 353,501 573,661 61.62

NF 13,947 412,392 426,339 3.27

Sum 234,107 765,893 1,000,000

OE (%) 5.95 46.16

OA = 63.25%

Proposed method F 195,556 202,251 397,807 50.84

NF 38,551 563,642 602,193 6.40

Sum 234,107 765,893 1,000,000

OE (%) 16.47 26.41

OA = 75.91%
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detection were evaluated, and results demonstrated that the proposed method can extract PIFs
suitable for use in relative radiometric normalization for flood change detection. Both the stat-
istical paired t-test and F-test on hold-out test pixels also convincingly indicate that, for bitem-
poral scenes exhibiting a large amount of change due to flooding, the proposed method produces
a better result than the IR-MAD method. Based on OA, in actual experiments of flood change
detection using the MAD- and CVA-based methods, the proposed method also produced better
results than the IR-MAD method. The CVA-based method produces better change-detection
results than the MAD-based method for both sites. Using the CVA-based change-detection
method, the OA achieved with the proposed method was 1.8% and 12.6% better than those
obtained with the IR-MAD method for the two study sites. To improve the accuracy and effec-
tiveness of the proposed method, our future research will focus on developing a strategy to utilize
VHR SAR images.
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