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Abstract. Delayed seasonal wetland drawdown is being investigated as one means of improving
the scheduling of saline drainage discharge to the San Joaquin River, California, as an appli-
cation of the principal of basin-scale real-time salinity management. A hybrid rapid vegetation
assessment methodology was derived from the California Native Plant Society Rapid
Assessment Protocol for classifying the vegetation in these seasonal wetlands. A hybrid remote
sensing methodology combining pixel- and object-based components was developed to apply
this classification strategy to a 160 km2 region. Twenty-six different plant communities were
represented in a total of 20 land cover classes. An overall mapping accuracy ranges from
60% for identification of all 26 plant communities to 100% for identification of a single
plant species. Low representation of certain associations for sensor calibration resulted in
lower than anticipated mapping success as measured by errors of omission and commission.
This image processing methodology provides an important tool, in concert with soil salinity
mapping and wetland biology surveys, to assess the long-term impact of adaptive management
strategies such as real-time salinity management on the wetland resource. © The Authors.
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1 Introduction

High-resolution remote sensing imagery has been used successfully in conjunction with image
classification software tools for wetland vegetation mapping and wetland vegetation change detec-
tion for several decades.1–3 Wetland vegetation in general and seasonal wetland vegetation in par-
ticular exhibit high spatial and spectral variability because of steep environmental gradients, which
produce short ecotones and often result in sharp borders between vegetated wetland regions.3–5

Spectral reflectance, the property of vegetation that is most often used to discriminate between
important plant species of ecological significance, is a function of leaf optical properties that
are related to the biochemical and physiological characteristics and health of the plant.3,6

Adam et al.,3 in a survey of spectral and multispectral survey techniques, acknowledge the com-
plications with optical remote sensing techniques that perform classification based on spectral
reflectance alone, given the similarities of spectral signatures and the potential interference
from atmospheric conditions, plant moisture status, and underlying soil and litter characteristics.
They provide examples of postprocessing techniques using fuzzy logic algorithms and other
higher-order classification techniques that have been shown to improve classification accuracy.
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In addition to visible light and near-infrared (NIR) sensors that provide information about the
surface chemical composition of vegetation and other materials, thermal infrared sensors measure
near-surface thermal characteristics and radar sensors provide signals proportional to the near sur-
face physical properties of topography, roughness, and moisture.7 Although hybrid optical and
radar techniques might hold promise in the future for improving vegetation classification accuracy,
there are few practical examples that might benefit the current study.

The basic premise and motivation for the current study were to provide a quantitative assess-
ment of potential long-term damage to wetland waterfowl habitat and to the overall wetland
biological resource as a result of compliance with State-mandated salinity management objec-
tives. Hence, the aim was to investigate whether quantitative longitudinal (over time) surveys of
wetland moist soil plant succession, when combined with surveys of soil salinity, continuous
monitoring of salts in and out of these wetlands, and biological monitoring of waterfowl and their
food sources,8 could be used to help limit long-term damage due to wetland management prac-
tices such as delayed drawdown or other forms of water reuse. If shown to be accurate and
reliable—vegetation mapping, in concert with these other survey techniques, could be used
to provide assurances to seasonal wetland managers to embrace the concepts of real-time
water quality management while promoting adaptive management of the biological resource.
If this technology is to find widespread use in the Grasslands Basins wetlands, it also needs
to be formulaic and easy to use. Given dwindling wildlife management agency budgets, it should
also be relatively quick to perform and inexpensive. One potential cost-saving development
might be the creation of spectral libraries for common wetland moist soil plant associations
as suggested by Zomer et al.4 and Adams et al.3 This could considerably reduce the high
cost of field surveys to verify the spectral signature of the most common and important
moist soil plants.

1.1 Background

The Grasslands Ecological Areas in California’s San Joaquin Valley constitute the largest con-
tiguous wetlands remaining in California and provide essential habitat for migrating and over-
wintering waterfowl and shorebirds. They are recognized by RAMSAR as an ecological wetland
resource of global significance. California wetlands have been significantly reduced in number
and total area, largely through conversion to agricultural land. The loss of California wetlands
since 1850 has been estimated at 91%, and in 1988, the California Department of Parks and
Recreation estimated that California had lost 80% of its salt marshes and 90% of its freshwater
marshes.9 The north Grassland Water District and San Luis National Wildlife Refuge (Fig. 1)
together comprise 160 km2 of seasonal wetlands. These wetlands lie on the Pacific Flyway and
are an important source of food and habitat for migrating and local bird populations. The wet-
lands, both publicly and privately owned, are also significant water users in the area. As water
resources become increasingly scarce, the need to accurately estimate water needs and water
quality impacts of these areas becomes an increasingly high-priority problem. The water regime
in these managed wetlands is largely artificial, with surface water inflows and outflows designed
to replace a natural wetland cycle. Water management practices include the timing of irrigation
and drawdown to maximize desirable food production plants and to minimize undesirable
weeds. Outflow events, such as wetland drawdown, can affect water quality in the San
Joaquin River10—hence, wetland managers could schedule wetland drawdown to match periods
of high San Joaquin River assimilative capacity. San Joaquin River assimilative capacity is deter-
mined by the salinity water quality objective at a downstream compliance monitoring station
(Vernalis) and the ambient salt loading from upstream sources.11–13 The annual wetland salt
load contribution to the San Joaquin River ranges from 8% to 11% of the total annual salt loading
measured at the Vernalis compliance monitoring station.11,14

Modifications to wetland water management practices, such as changes in the scheduling of
wetland spring drawdown, have the potential to alter the germination success of certain high
yield and energetically important moist soil plants such as swamp timothy (Crypsis schoenoides),
watergrass (Echinochloa phyllopogon), and smartweed (Polygonum hydropiperoides), which in
turn can impact the wetlands’ ecological health and distribution of habitat.9,15–23
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Historically, the hydrology of the Grasslands Basin wetlands was subjected to the local
climate typified by cool, rainy winters and hot, arid summers. This resulted in a period of
inundation during the fall and winter, followed by spring drainage and high rates of evapotran-
spiration during the summer months. The water regime in these seasonal wetlands is now exten-
sively managed, with surface water inflows and outflows designed to replace the natural wetland
hydrological cycle. Water management practices include the timing of flood-up, summer irri-
gation, and wetland drawdowns to maximize desirable food production plants and to minimize
undesirable weeds. Habitat assessment is needed to optimize the timing of these changes.
Traditional means of habitat assessment such as random sampling or transects for large
areas (>1000 acres) are extremely labor intensive.24 It can also be difficult to acquire timely
data at a high enough resolution. Moreover, although impact assessment using a fine-scale sam-
pling program at the individual pond level could be accomplished, the spatial variations found in
larger areas may be missed completely. What is needed is a way to rapidly assess and quantify
the various habitat communities at the regional scale and to readily track changes in those com-
munities from year to year.25–36 Rapid and semiautomated methods of developing annual maps of
important moist soil plants abundance and distribution using remote sensing are highly desirable.
Investigating this possibility was one of the goals of this research.

1.2 Applications of Remote Sensing to Wetland Vegetation Mapping

Mapping techniques that can accurately map large areas of seasonal wetlands are essential to the
ability to manage the habitats, biodiversity, and other resources and services provided by wetland
processes. Seasonal wetlands have been under-represented in attempts to map habitats using
remote sensing. Although not all studies have been successful, high-resolution remote sensing
has been demonstrated to have the potential to map wetlands at the species-level.25,26,28,32,33,36

The high spatial resolution of the sensor is essential to map the patchy distributions found in
seasonal wetlands.37 Due to the high degree of vegetative diversity in seasonal wetlands, veg-
etation mapping is a challenging task. A maximum likelihood classification technique was

Fig. 1 Project imagery (2004) showing North Grassland Water District (NGWD) outlined to the
west and the San Luis National Wildlife Refuge (SLNWR) to the east. Inset shows the location
of the site within central California. The image is displayed with a false color mapping and
a contrast stretch to enhance viewability. Verdant vegetation displays as red in this mapping.
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initially chosen for image processing, since this algorithm effectively takes into account the
covariance from other land cover classes. The application of polygon-based image processing
techniques has been shown to be useful in reducing the noise created by pixel-based mapping
and for helping to delineate areas of the wetland basins occupied by certain suites of species. The
use of multitemporal imagery helps to distinguish vegetation classes that experience growth and
reach peak maturity at different times—a feature of the vegetative community that is often char-
acteristic of seasonal wetlands.19

Producing accurate vegetation maps of seasonal wetlands is a task with unique challenges.
Like other wetlands, seasonal wetlands have a patchy distribution of vegetation that requires a
high spatial resolution in order to map small and irregular shapes accurately. For this application,
accuracy refers to the proportion of pixels for which their assigned land cover class correctly
represents overstory vegetation or that seen by the aerial sensor. A number of wetland stud-
ies26,34,38 have found spatial resolution to be a limiting factor in their objective of mapping wet-
lands, even in the case of mapping broad classes that encompass a range of vegetation. Ozesmi
and Bauer39 reviewed the use of low to medium resolution remotely sensed imagery, such as
Landsat TM and SPOT, for mapping wetlands and found that the pixel size was one of the pri-
mary limitations.

Other studies29,40 have successfully mapped wetlands’ extent and vegetation types using
medium resolution satellites, but at the expense of detail in their land cover classes. Land
cover classes in these two studies covered broad ranges, such as swamp, grasslands, crops,
and shallow marsh, but did not attempt to discern vegetation associations within those classes.
Seasonal wetlands have the potential to incorporate a great diversity of species, including species
endemic to vernal pool landscapes.41,42 Although land cover classes may include more than one
species, it is generally appropriate to represent a greater number of species with a greater number
of land cover classes. While greater species richness in the landscape makes the task of mapping
more difficult, the diversity of canopy structures exhibited by different species may pose some
advantages. Different canopy structures can lead to different textures and can make visible
varying amounts of soil, both of which may enhance variability in spectral reflectance between
plant associations.

Hyperspectral remotely sensed imagery offers some advantages over multispectral systems,
but is more difficult to work with, more expensive, and less readily available.30 Time of year and
environmental factors may also reduce its effectiveness. The reflectance spectra of a limited
number of New Jersey salt marsh species were found to be separable using a handheld spec-
trometer in the fall.25 Schmidt et al.43 achieved only 40% accuracy using high-resolution hyper-
spectral imagery to map salt marshes in the Netherlands at the species level. Yang36 reviewed
remote sensing studies of estuarine systems and found that the hyperspectral imagery had great
potential for species discrimination, but that the implementation of hyperspectral studies is cur-
rently limited by a lack of spectral libraries available for wetland species. Hyperspectral imagery,
such as ASTER with a ground-pixel size that varies from 15 m for VNIR, 30 m for SWIR, and
90 m for TIR can also be limited in its ability to map heterogeneous, patchy wetland environ-
ments. Hyperspectral imagery was used to map areas in Everglades National Park at the species
level.30 However, the study’s success was limited by a lack of spatial resolution adequate to
characterize irregular wetland patches. Few remote sensing studies of seasonal wetlands
exist, so it is worth noting that Schmid et al.44 also used hyperspectral imagery in combination
with ground spectra and multispectral imagery, to successfully map broad vegetation classes in
seasonal wetlands in Spain.

Using high-resolution multispectral imagery, such as IKONOS, Quickbird, or color infrared
(CIR) aerial photography, has the potential to economically and accurately map wetland land-
scapes. Hurd et al.31 and Tuxen et al.45 used QuickBird data and CIR photography, respectively,
to map salt marshes and found that accurate mapping at the species level was possible. In con-
trast, Shuman and Ambrose46 compared the use of high-resolution color infrared aerial photog-
raphy to ground methods in identifying and quantifying land cover, including eight species, in
a southern California salt marsh and found that, while CIR was an effective tool for judging
percent ground cover, individual species could not be identified. As another example, an unsu-
pervised clustering algorithm was applied to IKONOS imagery to classify broad classes of emer-
gent and submergent vegetations in Minnesota wetlands.32 Preliminary results indicated that
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mapping at the species level was not possible with this combination of imagery and software.
Furthermore, none of these project areas were comprised of the number of species typical of
seasonal wetlands in California’s San Joaquin Valley.

While pixel-based remote sensing has been the dominant paradigm for some time, recent
developments in polygon-based, or object-based, image processing may improve mapping accu-
racies using high-resolution multispectral imagery.47 Polygon-based approaches correlate well
with the human experience of the wetland landscape as patches of self-similar vegetation com-
munities. Whiteside and Ahmad48 found the substantial benefit of polygon-based mapping when
compared with pixel-based mapping of forested areas in northern Australia. However, only 10
broad vegetation classes were assessed in an area of over 1300 ha. Other researchers used infor-
mation from both pixel-based and polygon-based classifications to map the extent of salt marsh
in Long Island Sound using Landsat TM data.31 Preliminary results indicated that a hybrid
pixel-polygon based approach improved the accuracy of their mapping.

Remotely sensed digital imagery captures the spectral reflectance values of different land
cover classes. By combining high-resolution satellite images and image processing tools
with industry standard environmental survey methods, we can accurately and efficiently estimate
the abundance of different species of wetland vegetation over large regions. Analysis of satellite
imagery to quantify land cover in managed wetlands has multiple benefits. Compared with tradi-
tional vegetation survey techniques, satellite imagery requires significantly less time and labor,
while covering a larger area. Rather than the exhaustive on-going field effort that would be
required to survey a large area such as SLNWR, field work was limited to the time necessary
to provide calibration for the image. While satellite imagery can be used effectively to map large
or small areas, it becomes increasingly cost effective for larger study sites. Satellite imagery is
also a flexible technology; depending on the variables of interest, image collection can be timed
to capture different features throughout the growing season. Through tracking the changes in
multitemporal imagery and correlating changes with previously made management decisions,
impacts may be assigned to various land use activities.20

Satellite imagery is also an unbiased and consistent data source, reducing concerns of con-
sistency between teams of surveyors, or drifts in field methodology and nomenclature during the
field season. As an added benefit, the availability of satellite imagery as an unbiased and stand-
ardized data source creates the potential for study sites to be viewed in a broader context, both
regionally and worldwide. Finally, the imagery provides an archival data source, which after its
initial use continues to be available as a historical reference and can be used in later studies,
the requirements of which may not have been foreseen at the time.

1.3 Application to San Joaquin Basin Seasonally Managed Wetlands

In this project, a methodology was developed for mapping seasonal wetlands in the San Joaquin
Valley. The project was performed in two study areas: the San Luis unit of SLNWR and the
northern zone of Grasslands Water District (NGWD). These two areas are in close association
with similar climate, soils, and topology, yet they differ slightly in their management goals, land
history, and diversity of both flora and fauna. The two areas represent two end points achieved
through differing management strategies and provide the opportunity to evaluate the robustness
of the mapping methodology. Mapping can perform two major functions for land managers of
these areas: first to catalog the existing vegetation communities, both in composition and aerial
extents; and second to assess changes in these communities over time. If a mapping methodology
can perform these two functions conjunctively, it can provide valuable assistance to wetland
managers in making effective management decisions.

1.4 Impacts of Basin Real-Time Salinity Management

Recently enacted state water quality regulations for salinity in the San Joaquin Basin constrain
the salt loading that can be returned to the river from all dischargers, including managed
seasonal wetlands, so that it does not exceed the river’s assimilative capacity. Concentration
objectives for salinity are to be met at a downriver compliance monitoring station primarily
to protect water quality for Delta riparian agricultural diverters during the critical germination
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period. Average wetland salt loading currently accounts for between 10% and 15% of the total
salt loading to the San Joaquin River, measured at the downstream compliance monitoring sta-
tion.11 Real-time water quality management has been suggested as a means of improving the
scheduling of wetland saline drainage loads to better coincide with periods of high assimilative
capacity within the San Joaquin River.13,14,49 Delayed seasonal drawdown from private and pub-
lic wetlands, managed for waterfowl habitat, is one option that is being considered so that the
wetland drainage salt loads are scheduled to coincide with reservoir releases of high-quality
water, made annually in the spring to aid salmon migration. Real-time water quality management
would require that a sufficient volume of wetland saline drainage be rescheduled to help meet
water quality objectives—this annual volume could be large in dry and critically dry water years
and small or zero in wet water years.

Real-time water quality management will only be successful if actions such as delaying
seasonal wetland drawdown or wetland drainage reuse can be shown to have no long-term impact
on the habitat value, biological health, and diversity of the seasonal wetland resource for migratory
waterfowl and shorebirds. Potential long-term impacts of making changes to the traditional sched-
uling of seasonal wetland drawdown are being assessed in this and related projects using both
biological and vegetative survey techniques. In this paper, only vegetation mapping aspect of
this larger resource management study is discussed.

2 Methods

2.1 Imagery

The QuickBird satellite (Digital Globe, Longmont, Colorado) was tasked to provide high-res-
olution, multispectral imagery for the project. A high spatial resolution was necessary to capture
the spatial variability of the patchy and irregularly shaped vegetation communities that are typ-
ical of these wetlands. Mapping for this project was conducted using this digital high-resolution
remotely sensed imagery—each subsequent year of imagery is being compared with a base year
as a means of detecting change conditions.50

The imagery provided bands in the blue, green, red, and NIR spectrum. The imagery was
orthorectified by Digital Globe, and the root mean square error for the orthorectification process
was 2.1 pixels. Objects reflect solar irradiance with respect to their individual spectral and direc-
tional properties. Radiometric correction of images is performed to take account of various
atmospheric distortions to surface reflectance and becomes necessary when imagery from
different dates and sensors is used for quantitative image analysis. No radiometric or reflec-
tance corrections were performed on the imagery for two reasons: (a) the imagery was col-
lected from the same sensor and taken at approximately the same time of day; and (b) our aim
was to develop a low-cost and technically manageable solution—performing these corrections
would have beyond the skill of the analysts targeted in the study. Imagery was collected for
three dates—April 26, May 14, and June 19, 2004. Image collection was timed to capture
different stages of growth throughout the growing season. Image pixels were assigned
vegetation classes based on the dominant land cover class. Land cover classes used in this
study may be comprised of buildings, open water, bare soil, litter, or a particular association
of vegetation. The late April image would capture seedlings and perennials in wetland basins
and verdant uplands vegetation. The May imagery was timed to coincide with the maximum
growth period for the wetland basins, following the first summer irrigation, usually late May
to early June.51 The May imagery would, therefore, capture a mix of inflorescence and mature
growth in the wetland basins and a mix of inflorescence, verdant growth, and seeding in the
uplands vegetation. The June imagery was chosen to capture inflorescence, mature growth,
seeding in the wetlands basin, and seeding and senescence in the uplands vegetation.

2.2 Ground Sampling Surveys

For field data collection, a novel Rapid Assessment Protocol (CNPS-RAP) recently developed
by the California Native Plant Society was modified to more accurately represent the wetland
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moist soil plant community structure. The CNPS-RAP employs a community-based approach to
surveying and provides a methodology for collecting basic quantitative information sufficient for
identification and verification of habitats. In its original format, the CNPS-RAP uses a one-page
worksheet to rapidly assess large landscapes for a number of important parameters. These param-
eters include location and distribution of vegetation types and communities, composition and
abundance information on the member plant species, and general site environmental factors. The
CNPS-RAP also provides guidance for the identification of plant community characteristics such
as the level of community disturbance.52 This method has been used to provide land use man-
agers with efficient tools for natural resource inventorying and planning.52

Modifications were made to the published CNPS protocol to make it applicable to our
study—this protocol had not previously been applied to seasonally managed wetlands. For
example, in our field surveys, field protocols ignored the CNPS’s emphasis on native species
and placed equal weight on cataloging important non-native species (Table 1). Because of
the availability of detailed soils maps for the area, the time-consuming soil classification tech-
nique used by the RAP was replaced by existing soil survey data. Other minor modifications
included the addition of new data fields, such as annotating the presence of visible salts, as it
was perceived that this could have an effect on the spectral response of the land cover. The
traditional RAP vegetation worksheet was programmed into a handheld GPS computer.
Parameters collected include composition and abundance information on the sampling loca-
tions’ plant species, their state of health, and growth stage. General site environmental factors
were also tabulated including litter cover, anthropogenic disturbances, the presence of visible
salts, and soil cracking. No particular emphasis was placed on cataloging native species for
this study.

A Trimble GeoExplorer 3 GPS was programmed with the data fields necessary to define a
vegetation community. Data were postprocessed via differential correction to improve on-ground
accuracy to less than 2 m. Modified RAP data representing a community of vegetation were
associated with a single point on the map. Field personnel worked in teams defining the boun-
daries of a homogenous area, visually estimating the size and shape of the area, and then char-
acterizing it according to the field protocol. Sampling locations represent all managed, accessible
ponds in the San Luis Unit. (The southwest corner of the refuge is home to a sensitive species,
the tule elk, and was not sampled for that reason.) Local biologists assisted field personnel in
stratifying data collection efforts so that the common associations were well represented. More
emphasis was placed on sampling wetland basins than upland areas. A total of 407 samples were
collected during the weeks surrounding imagery collection. Figures 2 and 3 show the sampling
locations overlaid on project imagery.

2.3 Ground Truthing Surveys

Ground truthing of remotely sensed imagery is the process of collecting in situ data that tie the
spectral values in the imagery to land cover on the earth’s surface. Ground truth data may be used
both as input to the classification process and, once classification is complete, to check the accu-
racy of interpretation. Ground truth data were collected during the days shortly before, during,
and after the satellite flyovers to ensure maximum correlation between field data and the
recorded image. Ground truth data were collected on the San Luis Unit of the SLNWR and
from the Salinas Land and Cattle Club (Salinas Club), a privately owned area of approximately
600 ha, during the same time period. Ground truth data were postprocessed for improved accu-
racy and utility. GPS feature positions were postprocessed via differential correction to improve
the accuracy of feature locations. Differential correction utilizes data from a regional base station
with a known, fixed location to correct for GPS errors that may be introduced via satellite error,
transmission error, or atmospheric effects. Differential correction was performed using Trimble
Pathfinder Office software and using cotemporaneous base station data from the National
Geodetic Survey Continuously Operating Reference Stations. Following differential correction,
the data were exported to ESRI (Redlands, California) shapefile format. The feature attribute
data were then analyzed using ESRI’s ArcGIS software to identify the two dominant species
in each vegetation community. The field data could then be applied to classification of the
images.
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Table 1 Sample field data from modified California Native Plant Society Rapid Assessment
Protocol (CNPS-RAP).

Attribute Name Field Entered Data Explanation

Surveyor Jos and Sara Personnel performing the survey

Veg_cov 35% to 50% Bird’s eye view of ground cover of viable vegetation

Litter_cov 1% to 5% Bird’s eye view of litter cover

Litter_typ Herbaceous Type of litter, if present

Soil_mois Dry Soil moisture

Cracking Soil cracking, if present (low, medium, high)

vis_salt Visible salts, if present (low, medium, high)

Soil_com Soil comment

Shape_1 Irregular Shape of vegetation community

Shape_com Shape comment

Size 300 to 600 m2 Size of vegetation community

Topography Flat Topography covered by community

Disturb Type of community disturbance, if present

Dist_level Disturbance level, if present

Dist_com Disturbance comment

Com_com Community comment

plant1 Cocklebur Species ID of first plant

Growth1 Prebloom Growth stage of first plant

Health1 Good Health of first plant

Per_cov1 35% to 50% Bird’s eye view of ground coverage of first plant

sp_conf1 High Confidence in species ID

sp_com1 Species comment

Oth_sp1 Text field for field entry of unlisted species ID

Hea_com1 Health comment for first plant

plant2 Swamp timothy .

Growth2 Prebloom .

Health2 Fair .

Per_cov2 1% to 5%

sp_conf2 High

sp_com2

Oth_sp2

Hea_com2

plant3 Bermuda grass

Growth3 Prebloom

Health3 Good

Per_cov3 <1%

sp_conf3 High

sp_com3

Oth_sp3

Hea_com3

plant8 Attributes for up to eight species

patch1 Scirpus spp. First patch within the community, if present

patch1_com Comment for first patch

patch2 Baltic rush .

patch2_com .

patch3 .

patch3_com Attributes for up to three patches

adjac1 Scirpus spp. Dominant species of adjacent community, as needed

adj1_com Comment for first adjacent community

adjac2 .

adj2_com .

adjac3 .

adj3_com Attributes for up to three adjacent communities
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In a few cases, ground truth points were selected after the fact based on the analyst’s inter-
pretation of the images. Data points were selected this way for the land cover classes of trees,
water, and buildings. Each of these land cover types was easily identifiable through visual analy-
sis of the image and difficult to obtain values for in the field. Collecting points in this way
involves a negligible risk of error on the part of the analyst and ensures adequate data to compile
a robust spectral signature for these classes.

2.4 Classification Schema

Pixels and ground truth points were assigned to 1 of the 20 land cover classes. Vegetation land
cover classes were developed from observations of the dominant species in each vegetation
assemblage at ground sample points. Land cover classes are listed in Table 2. The decision
to combine two or more dominant land cover classes into a single class was based on the sim-
ilarity of their habitat, the frequency of their co-occurrence on the landscape, and the amount of
spectral confusion between the classes that was observed in the check point dataset. For example,
alkali heath, alkali weed, dwarf spikerush, and bare soil all occur in similar habitats and often co-
occupy the same habitats. There was significant spectral confusion between these four classes.

The complexity of the seasonal wetland landscape intensifies the difficulty inherent in devel-
oping a representative classification schema. The 20 land cover classes in this schema do not

Fig. 2 Ground truth locations, San Luis Unit, San Luis National Wildlife Refuge, Merced County,
California. Field data locations have been overlaid on a false color mapping of the near-infrared
(NIR), red, and green bands of the May 14, 2004, satellite imagery. Regions of verdant vegetation
appear red, water appears dark, and regions of dry uplands appear light green.
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Fig. 3 Ground truth locations, Salinas Club, Merced County, California. Field data locations have
been overlaid on a false color mapping of the NIR, red, and green bands of the May 14, 2004,
QuickBird imagery. Regions of verdant vegetation appear red, water appears dark, and regions of
bare, dry soil appear bright.

Table 2 Land cover classes, abbreviations, and data points.

Common name Scientific name Class name
# training
points

# check
points

Alkali bulrush—swamp
timothy

Scirpus maritimus & Scirpus
fluviatilis—Crypsis schoenoides

Scma—Crsc 36 76

Alkali heath—alkali weed—
dwarf spikerush—bare soil

Frankenia salina—Cressa
truxillensis—Eleocharis
parvula—n/a

Frsa—Crtr—
Elpa—soil

32 21

Baltic rush Juncus balticus Juba 12 7
Bermuda grass—clover Cynodon dactylon—Trifolium spp. Cyda—Tr spp. 15 14
Brass buttons—iodine bush Cotula coronopifolia—Allenrolfea

occidentalis
Coco—Aloc 10 9

Cattails Typha spp. Ty spp. 5 3
Cocklebur—watergrass Xanthium strumarium—

Echinochloa crus-gali
Xast—Eccr 21 16

Creeping wildrye Leymus triticoides Letr 11 6
Curly dock Rumex spp. Ru spp. 7 3
Grassa—yellow
starthistle—rabbitsfoot
grass

n/a—Centaurea solstitialis—
Polypogon monspeliensis

grass—Ceso—
Pomo

25 31

Jointgrass Paspalum distichum Padi 10 8
Pepperweed—smartweed Lepidium latifolium—

Polygonum spp.
Lela—Po spp. 20 12

Saltgrass Distichlis spicata Disp 15 10
Tules Scirpus acutus Scac 5 4
Spikerush Eleocharis macrostachya Elma 5 5
Water hyacinth Eichhornia crassipes Eicr 1 1
Trees n/a Trees 9 8
Buildings n/a Bldgs 5 7
Litter n/a Litter 5 4
Water n/a Water 13 24

aGrass refers to undifferentiated or mixed grass species.
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represent the entire diversity of plant species that exists in these wetlands. Rather, it represents
the most commonly observed dominant plant species. Recorded observations commonly noted
three to five additional plant species as members of the vegetation community at most ground
truth points. A number of plant species exist widely as minor characteristics of the landscape, but
rarely or never outnumber other proximal species. In particular, a small number of vegetation
communities dominated by mustards (Brassica spp.), poison hemlock (Conium maculatum),
chufa (Cyperus esculentus), atriplexes (Atriplex spp.), burhead (Echinodorus berteroi), dodder
(Cuscuta brachycalyx), calicoflowers (Downingia spp.), mallows (Malva spp.), and others were
observed in the landscape. However, an insufficient quantity of field data was collected to for-
mulate spectral signatures for these communities. Although vegetation communities dominated
by these species will necessarily be misclassified, they are estimated to cover less than 1% of
the landscape.

A priori knowledge of the abundances and dominant status of different species can improve
the development of the classification schema, the effective deployment of field resources, and
classification accuracies. In the present study, cattails, curly dock, tules, spikerush, water hya-
cinth, and litter were described by an undesirably small number of training areas. Water hyacinth
was judged to have a sufficiently distinct spectral signature that it could effectively be repre-
sented by only a few points. In the case of the other five under-represented land cover classes,
they were observed to comprise a large area of the landscape, and hence could not be left out of
the classification schema.

3 Results

3.1 Image Processing

After the training area was defined, the image processing software was used to compile statistics
that describe the pixel spectral values. This process was repeated until a signature for each
ground truth point was created to be used as a training area. The final result was a compilation
of 262 spectral signatures used by the classification algorithm. An estimated probability of
appearing in the landscape was assigned to each spectral signature prior to classification process-
ing. Estimated probabilities were based in part on field personnel observations and in part on
prevalence of that land cover class in the collected field dataset. ERDAS automatically normal-
izes the sum of the probabilities for the 262 signatures so that they sum to 100%.

3.2 Pixel-Based Image Processing and Classification

Pixel-based image processing and data analysis were performed using software routines pro-
vided by ERDAS Imagine Professional. Other off-the-shelf commercial image processing pack-
ages are available that perform comparable analyses. A supervised classification technique—
whereby data input by an analyst is used to determine seed values for classes—was selected
for classification of the images. Maximum likelihood classification is a standard industry algo-
rithm for projects where adequate ground truth data have been collected. This technique requires
the input of “training” data, with which software algorithms define statistically based spectral
bounds for each class. Training data are derived from ground truth points, once an area around
each ground truth point representative of that community of vegetation has been defined—the
image processing software compiles statistics that uniquely describe the spectral values for that
community. Multiple ground truth points were combined into a robust spectral signature for a
single land cover class, and this process was repeated until a signature was created for all desired
land cover classes. After all training data were entered into the spectral signature file, the clas-
sification algorithm was implemented. The maximum likelihood algorithm uses the defined
spectral signatures to extrapolate from the training pixels to all the pixels in the image. This
is an efficient process, resulting in the use of data from a few thousands of pixels to classify
an entire image comprised of tens of millions of pixels. Every pixel was assigned to a class—the
class it is “most likely” to belong to, even if the pixel’s spectral values fell outside the initial seed
values for that class.
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Through a complex process of signature refinement, individual training signatures (Fig. 4)
evolve into the final class signature file that is used to classify the image. The class signatures are
based on multiple single signatures added together in proportion to the number of pixels each
represents. After signatures are compiled for each class, they may be evaluated for separability.
There are several tools that may be used for this evaluation. Figure 5 shows a matrix of sepa-
rability values for 10 land cover classes. The matrix shows the separability of pairs of classes.
For example, the value in row 1 and column 2 would indicate an excellent separability between
Scirpus spp. and bare soil/iodine bush. Classes that are not adequately separable can result
in pixels misclassified as the other member of the pair. Separability was calculated in all

Fig. 4 May 14, 2004, spectral signature file. Each class is the result of compositing training data
for numerous ground truth points. The total number of pixels included in each class is displayed in
the “Count” column. The color swatch, used for visualization only, is derived from the average
values of all pixels comprising that class, based on the color mapping used in the display window.
Since NIR is mapped to red in the display window, vegetation tends to appear red.

Fig. 5 Separability matrix showing transformed divergence values for the first 10 land cover
classes from the spectral signature file. Values over 1900 are considered to indicate excellent
separability; values greater than 1700 represent good separability; and values greater than
1500 are considered adequately separable.

Quinn and Burns: Use of a hybrid optical remote sensing classification technique. . .

Journal of Applied Remote Sensing 096071-12 Vol. 9, 2015



four image bands, using a measure of the spectral distance between classes known as
transformed divergence. Transformed divergence ranged in value from 0 to 2000, and values
over 1500 were considered to be separable.

3.3 Object-Based Image Processing and Classification

Definiens eCognition software is an advanced, object-based image processing package provid-
ing specialized algorithms not currently available in traditional (pixel-based) image processing
packages. For the purposes of this project, eCognition was used in conjunction with ERDAS
Imagine Professional to apply a maximum likelihood classification to landscape objects in the
form of polygons. eCognition uses spectral and shape characteristics of the raw imagery to sep-
arate pixels into self-similar landscape objects. This correlates well with viewing the landscape
in terms of vegetation communities or in terms of homogenous land cover classes such as roads
or water. Polygon objects created using eCognition were used later in the study to compare a
landscape-object-based approach to a pixel-based approach in using the maximum likelihood
classifier. A close up of the raw imagery divided into landscape object polygons is shown
in Fig. 9.

In Fig. 6, band 2 (green) is plotted on the X-axis, and band 4 (NIR) is plotted on the Y-axis.
The two-dimensional location of a point on this plot is determined by its spectral value in the two
bands. Colors represent the frequency of occurrence of that spectral value combination. Red
depicts the combinations that occur frequently in the dataset. Violet depicts the combinations
that occur least frequently. The class bounds, as determined by training data, of buildings,
Scirpus spp., and water are plotted on this feature space. The three classes are unambiguously
separable in bands 2 and 4. Furthermore, buildings occupy a sector of feature space not
represented in too many pixels. Scirpus spp., by contrast, is centered around a red sector.
This could indicate either a predominance of Scirpus in the image or a predominance of land
cover classes that reflect a signal similar to Scirpus spp.

An object-based vegetation map was developed for the May 14, 2004, imagery. An object-
based map was created by using a zonal analysis method to synthesize the results of the pixel-
based maximum likelihood classification with the landscape objects created via eCognition.

Fig. 6 Feature space analysis of separability of three land cover classes in bands 2 and 4 of
the May 14, 2004, imagery.

Quinn and Burns: Use of a hybrid optical remote sensing classification technique. . .

Journal of Applied Remote Sensing 096071-13 Vol. 9, 2015



Landscape objects incorporated spectral and shape information from the April, May, and June
imagery and used an eCognition scale factor of 50 (Fig. 7). Polygons were assigned a land
cover class based on the plurality of pixels existing within each polygon. The result is a smooth,
more easily interpretable vegetation map (Fig. 8) which improves the classification accuracy for
some classes.

Polygon objects were used to compare a landscape-object-based approach to a pixel-based
approach. Maximum likelihood classification assigns each pixel to a land cover class. Within
each polygon object, the number of pixels assigned to each class was tallied and the polygon was
assigned to the land cover class owning the most pixels in that polygon. This reduced noise in
the classification and created a generalized map useful for calculating the extent of different
land cover classes.

3.4 Image Processing Accuracy Assessment

Accuracy assessment was performed through standard calculations using randomly selected
ground truth points that had been set aside especially for this purpose. Check points are not
used in creating training signatures—hence they are a reliable, independent dataset for classi-
fication verification. The number of check points was 79, 115, and 131 for April, May, and June,
respectively, for the mapped areas. Accuracy assessment was evaluated using two industry-stan-
dard metrics: producer’s accuracy and user’s accuracy. Producer’s accuracy is the ratio of the
number of correctly classified check points in a class to the total number of reference check
points in that class. User’s accuracy is the ratio of the number of correctly classified check points
in a class to the total number of reference check points that were classified as the target class.
This metric is a measure of commission error and represents how likely it is that an imagery pixel
assigned to that class is actually a member of that class.

Error matrices display both errors of commission and omission as shown in Tables 3 and 4.
Numbers in the diagonal represent a correctly classified point. The producer’s accuracies, dis-
played in the far right column, are a ratio of the number of correctly classified check points to the
number of check points collected in that land cover class. This is a measure of how correctly
check points in that class are classified. The user’s accuracies, displayed in the bottom row of
the matrix, are a ratio of the number of check points in a class that were correctly assigned to the

Fig. 7 Segmentation of imagery into self-similar polygon objects. Blue dots represent a hypo-
thetical spectral signature of each cattails training area, and the orange circle represents the
hypothetical spectral region in which pixels would be assigned to the Ty spp. class.
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total number assigned to that class. This is a measure of how likely a pixel assigned to that class
on the final map will be correct.53

The overall mean accuracy obtained in mapping land cover through a pixel-based method
was 60% (Table 3), with the error seen in individual classes ranging from 0% (Ty spp. and litter)
to 100% (Juba, bldgs, Scac, and Eicr). The overall accuracy is computed as the number of cor-
rectly classified points divided by the total number of check points. Classes that achieved a user’s
mapping accuracy of 75% or better include Frsa—Crtr—Elpa—soil, Juba, bldgs, Scac, Xast—
Eccr, water, and Eicr. In addition, substantial confusion exists between the two closely related
classes Crsc—Scma (swamp timothy and alkali bulrush) and Frsa—Crtr—Elpa—soil (alkali
heath, alkali week, dwarf spike rush, and bare soil). Considering the functioning of these
two classes in the context of the wetland ecosystem, it would be reasonable to combine
these two classes, resulting in a higher level of accuracy for both classes and a higher overall

Fig. 8 Pixel-based maximum likelihood classification of the Grasslands Basin wetlands that
includes both the SLNWR and NGWD.
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accuracy for the classification. In contrast, the maximum likelihood classifier clearly had
difficulty distinguishing the following classes: Ty spp., Letr, Ru spp., Padi, and litter. From
field observations, Ty spp. (cattails), Ru spp. (curly dock), and litter all exist in a myriad of
forms. Cattails exist on the landscape as both a sparse and dense dominant, allowing a
bird’s eye view of a wide range of soil and understory plants. Curly dock coexists with
a broad range of commensurals, from upland to emergent species. Finally, litter ranges from
a whitish algal litter, to gray woody stems, to brown senescent leaf litter. These three land
cover classes would be well served by a greatly increased number of training points and
check points to characterize each of them. Padi (jointgrass) was not observed to be highly
variable, but may also benefit from collection of additional ground truth points.

The polygon-based mapping (Table 4) achieved an overall accuracy of 54%. For the polygon-
based method, user’s accuracies for individual classes ranged from 0% (Ty spp. and Rum spp.) to
100% (buildings and Eicr). These results imply that a polygon-based approach for classifying
wetland imagery may produce less accurate maps than a pixel-based approach. However, during
processing of the imagery, some further improvements to the process became clear. In future
work, it would clearly be desirable to collect each training area from a multitemporal image.
For example, in this case, the spectral information for training areas could be derived from
a 12-band image including blue, green, red, and NIR bands from the April, May, and June
images. This would clearly provide additional data to the classifier which might be very ben-
eficial in separating different land cover classes.

Table 3. Error matrix for pixel-based maximum-likelihood classification of the Grassland Basin
wetlands.

S
cm

a—
C
rs
c

F
rs
a—

C
rt
r—

E
lp
a—

so
il

Ju
ba

C
yd

a—
T
r
sp

p

C
oc

o—
A
lo
c

bl
dg

s

T
y
sp

p

X
as

t—
E
ce

r

Le
tr

R
u
sp

p

gr
as

s—
C
es

o—
P
om

o

P
ad

i

lit
te
r

Le
la
—
P
o
sp

p

D
is
p

S
ca

c

E
lm

a

tr
ee

s

w
at
er

E
ic
er

G
ra
nd

T
ot
al

P
ro
du

ce
r’s

A
cc

ur
ac

y

Scma—Crsc 39 1 2 1 1 2 1 1 48 81%

Frsa—Crtr—
Elpa—soil

15 16 3 1 1 1 2 2 41 39%

Juba 1 7 1 1 10 70%

Cyda—Tr spp 2 1 9 2 2 1 1 18 50%

CoCo—Aloc 2 2 4 2 1 1 1 13 31%

bldgs 7 1 8 88%

Tyspp 1 1 0%

Xast—Eccr 4 12 1 1 18 67%

Letr 1 1 1 1 1 5 20%

Ru spp 2 1 1 4 25%

grass—Ceso—
Pomo

2 2 2 1 19 1 27 70%

Padi 2 2 2 1 1 8 25%

litter 1 3 4 0%

Lela—Po spp 1 2 1 6 1 11 55%

Disp 4 2 1 1 1 4 13 31%

Scac 1 1 1 4 7 57%

Elma 1 1 2 4 50%

trees 1 4 5 80%

water 23 23 100%

Eicr 1 1 100%

Grand Total 76 21 7 14 9 7 3 16 6 3 31 8 4 12 10 4 5 8 24 1 269

User’s Accuracy 51%76%100%64%44%100%0%75%17%0%61%25%0%50%40%100%40%50%96%100%

Note: Overall accuracy: 60%.

Quinn and Burns: Use of a hybrid optical remote sensing classification technique. . .

Journal of Applied Remote Sensing 096071-16 Vol. 9, 2015



A map of moist soil plant vegetation for the Grasslands Basin wetlands based on pixel-based
maximum-likelihood classification is shown in Fig. 9 and for the polygon-based maximum-like-
lihood classification in Fig. 10. There is very little difference visible to the eye. Figures 11 and 12
are more detailed version of these same maps, which zoom in to just the SLNWR area. The
visual appearance of the maps is quite distinct with more obvious clustering of moist soil plants
in the polygon-based map. Figure 12 shows how moist soil plant vegetation changes between the
months of May and June. The most obvious change in the June imagery (pixel-based processing)
is in the abundance of watergrass—which is a forb favored by late pond drawdown and which is
one of the three main protein sources for over-wintering waterfowl.

4 Discussion

A primary objective of this study which was to develop remote sensing as a component resource
assessment technology to support other monitoring programs to advance the concept of real-time
salinity management in the San Joaquin Basin of California was realized. Other ongoing re-
source assessment programs include: (a) monitoring sensor networks to continuously measure
flow and electrical conductivity of water entering and draining from a selected set of 18 wetland
impoundments; (b) soil salinity mapping of the same wetland impoundments using electromag-
netic sensor technologies (Geonics EM-38); (c) annual clip surveys to assess biomass and seed
production for swamp timothy (C. schoenoides) in the impoundments; and (d) waterfowl use
surveys to indirectly assess changes in habitat function. Use of the hybrid pixel- and object-based

Table 4 Error matrix for polygon-based maximum-likelihood classification of the Grasslands
Basin wetlands.
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Juba 1 6 3 1 1 2 14 43%
Cyda—Tr spp 3 9 1 2 1 16 56%
CoCo—Aloc 3 1 2 1 4 1 12 17%
bldgs 7 1 8 88%
Ty spp 1 1 0%
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Letr 2 1 3 67%
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Disp 1 3 1 1 5 11 45%
Scac 1 1 1 3 33%
Elma 5 1 1 7 14%
trees 5 5 100%
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Eicr 1 1 100%
Grand 76 21 7 14 9 7 3 16 6 3 31 8 4 12 10 4 5 8 24 1 269

Note : Overall accuracy: 54%.
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optical remote sensing techniques for wetland habitat assessment and change detection proved
cost-effective and provided valuable information in a form useful to wetland managers. The
suggestion from the published literature3,4 that the spectral signals could be developed in a
library for common wetland moist soil plant associations which would remain stable with
time proved elusive. In the succeeding three years (2005 to 2008), during which imagery was
either obtained from satellite or from aerial images, there were significant changes in the com-
position of these associations. As the mix of forbs or other moist soil plants in these vegetation
associations changes, so does the spectral signature. Hence, a full-field campaign of ground
sampling would be required each year to obtain accurate and meaningful results.

Field work for this study was performed without the benefit of prior knowledge of the abun-
dance or distribution of species. Field work was also constrained by time and limited personnel.
In these seasonal wetlands, annual emergent vegetation cannot be located until late spring, when

Fig. 9 Polygon-based maximum-likelihood classification of the Grasslands Basin wetlands that
includes both the SLNWR and NGWD.
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winter irrigation has subsided and seeds have had enough time to germinate. The later end of the
growing season is so hot and dry that most annuals have reached senescence by early July. After
senescence, it was more difficult to distinguish different vegetation communities. A highly tar-
geted field season was necessary to collect adequate data for classification of the large number of
land cover classes. By using the land cover map created from 2004 data, later data collection
efforts were better able to stratify data points between classes and reduce bias by employing
randomization of data point collection. Less effort was devoted to collecting data representing
alkali bulrush, swamp timothy, alkali heath, alkali weed, dwarf spikerush, and bare soil, while
more effort was devoted to classes exhibiting lower classification accuracies.

Implementation of real-time water quality management in the San Joaquin Basin aims to
improve coordination of saline wetland drainage return flows to the San Joaquin River with

Fig. 10 May 14, 2004, maximum likelihood pixel-based classification of the SLNWR. The map
shows in more detail the transitions between the moist soil plant associations.
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River assimilative capacity for salt. Concerns over the long-term impact of salinity management
applied to seasonal wetlands which could require practices such as delays to scheduled wetland
drawdown were the motivation for this study—to compare and contrast moist-soil plant veg-
etation succession in wetlands managed traditionally and those subjected to delayed drawdown.
The study focused on the development of analytical mapping techniques for moist soil plant
association mapping using two state-of-the-art software packages—ERDAS Imagine (Leica
Geosystems) and eCognition (Definiens). These mapping techniques used a combination of
pixel- and polygon-based image processing procedures. Twenty-six different plant communities
were represented in a total of 20 land cover classes. An overall mapping accuracy of 60% was

Fig. 11 June 19, 2004, maximum likelihood pixel-based classification of the SLNWR.Watergrass,
a forb associated with late wetland drawdown, shows up in greater extent in the western half of
the refuge.
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achieved for characterization of the 26 moist soil plant association classes and over 75% for the
characterization of individual plant species. Given the complexity of moist soil plant vegetation
within seasonally managed wetlands–it is expected that some land cover classes would be
mapped at very high accuracies and other land cover classes at very low accuracies.54 In general,
buildings and bare soil were readily and successfully discriminated using the digital classifica-
tion techniques deployed. Certain types of vegetation with overlapping spectral signatures were
often difficult to tell apart. Error assessment was compromised by certain wetland moist soil plant
associations where sample sizes used for classification and error assessment were significantly
different (they should ideally be of the same size). In one instance, only a single instance of a
particular moist soil plant association was recognized making statistical assessment impossible.

Fig. 12 May 14, 2004, polygon-based maximum likelihood classification of the SLNWR.
Summarizing pixels into landscape polygons eases visual interpretability of the map and improves
classification accuracy for some classes.
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5 Conclusions

The results of this mapping endeavor produced the first comprehensive seasonal wetland veg-
etation maps developed for this region. The results suggest that these techniques have great
potential for future wetland resource management as modified wetland drawdown and other
real-time salinity management practices are considered as ways of complying with state dis-
charge water quality regulations. Future improvements can potentially be made to the method
through full utilization of multitemporal high-resolution imagery and improved stratification of
data collection across land cover classes.

One innovation presented in this paper was the adaption of a rapid vegetation assessment
protocol (CNPS-RAP) developed by the California Native Plant Society55 and currently used
throughout California. Our adaption involved the substitution of many upland vegetation
plant associations with moist soil plant association more typical of wetland habitat. The second
innovation resulted from our comparison of pixel- and object-based imagery processing tech-
niques for both ease of use and accuracy and our refinement of a hybrid approach that improved
efficiency and repeatability at a relatively low cost. One major change that has occurred since
the study was concluded in 2008 has been the free access to Landsat imagery and a significant
reduction in the cost for higher resolution imagery from privately owned satellites. Keeping costs
down will be essential if change detection remote sensing is to become an integral component of
the real-time salinity management program.
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