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Abstract. Executive functions (EFs) associated with the frontal lobe are vital for goal-orientated behavior. To
date, limited efforts have been made to examine the relationships among the behavior, brain activation, and
topological organization of functional networks in the frontal lobe underlying various EF tasks, including inhib-
ition, working memory, and cognitive flexibility. In this study, functional near-infrared spectroscopy neuroimaging
technique was used to systematically inspect the differences in the brain activation and the topological organi-
zation of brain networks between various EF tasks in the frontal lobe. In addition, the relationships between brain
activation/network properties and task performances and the relationships between brain activation and network
properties were, respectively, examined for different EF tasks. Consequently, we have discovered that the nodal
and global properties of the resting-state and task-evoked networks, respectively, exhibited significant correla-
tions with the activation of various brain regions during various EF tasks. In particular, the measure that links the
neural activation to the topological organization of the brain networks in the frontal lobe can serve as a synergistic
indicator to examine the difference between various EF tasks, which paves a way toward a comprehensive
understanding of the neural mechanism underlying EFs. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.NPh.6.2.025008]
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1 Introduction
Executive functions (EFs) refer to a set of cognitive processes
that are essential for the cognitive control of behavior. In par-
ticular, EFs implicate the top–down control processes, which
are also vital for physical and mental health and academic and
job performances.1 EFs consist of three basic cognitive proc-
esses, such as inhibition, working memory, and cognitive flex-
ibility, in which inhibition involves resisting dominant response
and focusing on the present task, and working memory is asso-
ciated with holding and operating verbal or nonverbal informa-
tion in mind, whereas cognitive flexibility is related to shifting
between multiple tasks and adjusting the behavior appropriately
to a changing circumstance.2 It is widely recognized that EFs
are regulated by the frontal lobe,1,3 whereas frontal lesions
or dysfunctions can cause a wide range of cognitive deficits
and mental diseases, including dyslexia,4 dyscalculia,5 obses-
sive-compulsive disorder,6 attention-deficit hyperactivity,7 and
schizophrenia.8

Interestingly, recent neuroimaging and neuroscience studies
demonstrate that the different brain regions in the frontal cortex
are responsible for the various cognitive processes of EFs.
For example, previous reports have shown that the attentional
inhibition (measured by the flanker task) elicited the activation
in the supplementary motor area (SMA), the right ventrolateral
prefrontal cortex, the superior frontal gyrus, and the left

superior/anterior parietal lobe,9,10 whereas the response inhibi-
tion induced the activation in the right inferior frontal gyrus
(IFG) and the right pre-SMA.11–14 More important, during the
response inhibition task, it has been discovered that the superior
part of anterior frontal cortex exhibited reduced activation as
compared to that at rest.15,16 In addition, working memory is
considered to be linked to the functions of the dorsolateral
prefrontal cortex (DLPFC).17–19 In addition, a meta-analysis
study has revealed that the lateral and medial regions of the fron-
topolar area (FPA) get activated during the shifting between cog-
nitive rules.20 An additional study has also illustrated that the
FPA plays an essential role in monitoring multiple goals in par-
allel and in switching between them.21

In addition to the study of brain activation patterns, func-
tional connectivity (FC) analyses have become an increasingly
important tool for examining EFs.22 In particular, significant
progress has been made in the characterization of the human
brain networks, in which graph theory-based network analysis
is introduced to describe more comprehensive properties of the
functional topological organization of brain networks, such as
the small-worldness.23,24 More importantly, the brain FC during
a task is modulated primarily by the intrinsic resting-state net-
work architectures, and then secondarily by the task-evoked
networks.25 In addition, a previous study has demonstrated
that more globally integrated networks enable fast and effective
performance during an n-back task.26 Further, a recent func-
tional near-infrared spectroscopy (fNIRS) study associated
with cognitive flexibility has examined the relationship between*Address all correspondence to Zhen Yuan, E-mail: zhenyuan@umac.mo
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topological properties of the resting-state network in the pre-
frontal cortex and EF scores,27 in which they have discovered
that the total EF scores negatively correlated with regional net-
work properties in the right triangular IFG, whereas the EF
scores positively correlated with regional properties in the right
dorsal superior frontal gyrus. In addition, Zhao et al.’s study27

illustrated that the working memory is related to the regional
network properties in the right middle frontal gyrus and triangu-
lar IFG, whereas the cognitive flexibility is associated with the
regional properties in the right middle frontal gyrus.

Although the brain activation and FC were, respectively,
examined in a single study,28–31 the relationship between these
two perspectives has not been extensively explored. For exam-
ple, Mennes et al.32 inspected the relationship between resting-
state FC and brain activation by using the flanker task, in which
they discovered that the resting-state FC within default mode
networks showed a negative correlation with the task-evoked
brain activation, whereas the task-based FC positively correlated
with the brain activation. An additional study based on the visual
attention tasks also demonstrated that the local FC density,
which mainly decreased in weakly activated/deactivated brain
regions, was associated with better behavioral performance
and activation in the task-related networks.33

However, to the best of our knowledge, no systematic study
has been performed to examine the relationship between the
brain activation and the topological properties of FC during
the EF tasks. As a result, it is hypothesized for the present study
that the linking between the brain activation and the task-based/
resting-state FC can serve as a neural index, which might iden-
tify the significant difference between various cognitive proc-
esses of EFs, including inhibition, working memory, and
cognitive flexibility.

To test this hypothesis, the brain activation and resting-state-/
task-based FC are accessed based on four classic EF tasks (go/
no-go, flank, n-back, and switch). The cortical hemodynamic
changes at rest are first acquired and then task-based recordings
are also performed for the investigation of EFs with fNIRS.
The fNIRS is an emerging noninvasive optical neuroimaging
technique, which can offer unsurpassed temporal resolution
(50 Hz for the present system) and characterize the hemo-
dynamic fluctuations more precisely. In addition, fNIRS can
be operated in a more comfortable, portable, quiet, and natural
way with very few body constraints and low cost.34–37 In par-
ticular, the brain activation and FC, in this study, are first indi-
vidually explored and compared among various cognitive
processes of EFs. Further, we also carefully examine how the
activation and FC network are individually associated with
the behavior performances of four various EF tasks. More
important, we inspect the relationship between the activation
and the topological properties of brain functional networks dur-
ing tasks or at rest. As the linking between the brain activation
and the network properties of FC has never been systematically
explored for cognitive processes of EFs, this fNIRS work will
pave a new avenue toward a better understanding of the cogni-
tive mechanism of EFs.

2 Methods and Materials

2.1 Participants

A total of 30 college students (15 females and 15 males) were
recruited from the campus of the University of Macau, China.
Participants aged from 18 to 28 years (mean age: 23.2 years) had

normal or corrected-to-normal vision without histories of learn-
ing disabilities, medical illness, neurological, or psychiatric dis-
orders. Informed consent documents were signed prior to the
experiment. This study was approved by the Medical Ethics
Committee with the University of Macau.

2.2 Procedures and Tasks

The experimental tests were performed in a quiet room. 11-min
resting-state data were acquired before the performance of EF
tasks, which were utilized to construct the intrinsic functional
networks in the frontal lobe. During the resting-state recordings,
participants were instructed to close their eyes, remain still, and
avoid falling asleep. Subsequently, participants went through
four typical EF tasks related to different EFs components,
with a short break between any two tasks with the time period
determined by participants. These four tasks consisted of the
flanker task, go/no-go task, n-back task, and switch task. In par-
ticular, there were two conditions for each of the four tasks, in
which the incongruent, no-go, 2-back, and switch condition,
respectively, were the experimental conditions, whereas the con-
gruent, go, 0-back, and repeat condition, respectively, were the
control conditions. The schematic of experimental procedures of
the four tasks is illustrated in Fig. 1.

For the present experimental design, participants performed
the flanker task first after 11-min resting-state recordings, fol-
lowed by the go/no-go task. In contrast, the switch and n-
back tasks were arranged as the last sections for data acquisition
in order to reduce the possible influence of difficulty in perform-
ing the tasks. However, the order of the switch and n-back tasks
was not well counterbalanced, whose effect should be further
investigated in the future.

2.2.1 Flanker task

The flanker task was adopted to inspect the inhibition at the
attention level.38,39 The event-related stimuli were presented
trial by trial. Each trial lasted 15 s, which consisted of a 0.5-
s stimulus period, a 1.5-s presentation of a blank screen, and
a 13-s rest period with a fixation cross displayed in the center
of the monitor. The flank task had two congruent stimuli includ-
ing “< < < < <” and “> > > > >,” and two incongruent stimuli
including “< < > < <” and “> > < > >.” When the central
arrow points to the left (“<”), the participants were required
to press the left button, whereas they had to press the right but-
ton if it points to the right (“>”). Stimuli of each type were ran-
domly repeated 24 times.

2.2.2 Go/no-go task

The go/no-go task was utilized to study the inhibition at the
response level.40,41 The procedure of go/no-go task was very
similar to the event-related flanker task, in which a series of
English letters were presented. Participants were required to
press the space key with their right forefinger as soon as the
letter appeared (go condition), except the letter “X” (no-go
condition), which needed the participants to withhold their
response.

2.2.3 N-back task

The n-back task was used to investigate the working
memory.17,42,43 A block-design paradigm was adopted, which
contained six 0-back blocks and six 2-back blocks. Each block
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had 12 trials, and each trial started with a stimulus period of 0.5 s
with a letter in the center of the monitor, followed by a 1.5-s
blank screen (interstimulus interval). Participants need to
respond to the stimuli by pressing a key with their forefinger.
The stimuli materials consisted of a bunch of English letters,
which were presented randomly. During the 0-back condition,
participants responded to the letter “A” (target), whereas during
the 2-back condition, participants needed to respond to any letter
that was identical to the one presented two trials before (target).
During the n-back task, participants were required go through 0-
back and 2-back blocks in turns, and between the predecessor
and the successor blocks, there was a 30-s rest period.

2.2.4 Switch task

The switch task was used to inspect cognitive flexibility. The
procedure of switch task was quite similar to that of the flanker
task, except for an additional 50-ms cue presented before the
onset of the stimulus, which demonstrated the stimulus condi-
tions (odd/even or odd/even). The stimuli materials consisted of
a serial of Arabic numbers ranged from 0 to 9. For an individual
trial, a single letter was presented with a background shaped
either like a square (odd/even condition) or like a diamond
(low/high condition). Participants were instructed to determine
whether the number was odd/even or low/high with a left or
right key-press. It should be noted that in the low/high condition,
the number 0 to 4 was classified as “low,” whereas 5 to 9 was
classified as “high.” The trials were presented randomly either as
switch trials or as repeat trials. In switch trials, the task was
switched from the former one, whereas in repeat trials, the
task was the same as the former one.

2.3 Functional Near-Infrared Spectroscopy Data
Acquisition and Preprocessing

The fNIRS signals were acquired at a sample rate of 50 Hz by
using a continuous wave (CW) system (CW6 fNIRS system;
TechEn Inc., Milford, Massachusetts). The optode arrays com-
prised 8 laser sources at wavelengths 690 and 830 nm and 16
optical detectors, which generated 32 measurement channels.
We used a homemade plastic patch to hold the optodes with
a fixed interoptode distance of 3 cm and then placed the
patch on each participant’s head to cover the frontal lobe, as
displayed in Fig. 2(a). After the experiment, a three-dimensional
(3-D) digitizer (PATRIOT, Polhemus, Colchester, Vermont) was
used to measure the 3-D coordinates of the optodes, which were
further imported to NIRS_SPM44 for spatial registration to
generate the 3-D coordinates of all channels. In addition, the
distributions of the optodes and channels, mean MNI coordi-
nates of the channels, and anatomical labels are provided in
Fig. 2 and Supplementary Material in Table S1, respectively.

Before data preprocessing, the signal quality of each channel
was accessed by using the signal-to-noise ratio (SNR), which
was the ratio of the mean to standard deviation of the signal
intensity. According to Rose criterion,45 data from participants
with an SNR of <5 for both wavelengths were excluded for fur-
ther analysis as the low SNR could undermine the correspond-
ing correlations and network properties.46 The SNRs of bad
channels from each wavelength are listed in Table S2 in the
Supplementary Material for the excluded participants.

The preprocessing of fNIRS data was performed with
Homer2 software:47 (1) converting the raw data to the changes
in optical density, (2) removing motion artifacts by spline
method,48 (3) bandpass filtering (for filtering parameter

Flanker

Go/no-go

N-back

Switch

<<><<

0.5 s 1.5 s 13 s

+

0.5 s 1.5 s 13 s

0.5 s 1.5 s 0.5 s

50 ms 0.5 s 1.5 s

X +

G G

odd/even

13 s

5

1.5 s

<<<<<

0.5 s

0.5 s

E

Fig. 1 A schematic representation of the experimental procedures of the four EF tasks.
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selection, resting state: 0.01 to 0.08 Hz;49 EF tasks: 0.01 to
0.2 Hz), (4) using principal component analysis to remove
the first one or two eigenvectors accounting for 80% of the vari-
ance in the optical data, which was mainly contributed by heart
rate and blood pressure oscillations,50–53 (5) normalizing the
concentration changes by subtracting the mean channel-wise
concentration, which were further processed by dividing the
standard deviation (z-scores), and (6) providing baseline correc-
tion with the period from −2 to 0 s for a single trial. The adopted
frequency band was used to filter out the high-frequency physio-
logical noises, such as heart beat (∼0.8 Hz), cardiac cycles
(∼1 Hz), and breathing (∼0.2 Hz),50,51 as well as the slow-fre-
quency physiological drifts.54 In addition, for resting-state data,
data from 180 to 600 s were extracted before the preprocessing
to ensure stable signals, which were then detrended after the
preprocessing.46 The method for data preprocessing was in
line with those from previous studies.54–57 Importantly, both
the HbO and HbR signals can be used to characterize the acti-
vation and functional network properties of the frontal lobe dur-
ing the rest or EF tasks. However, most of previous fNIRS work
only reported the neuroimaging results based on HbO signals.58

In this study, both HbR and HbO data were analyzed to generate
the brain activation and construct the brain networks.

2.4 Brain Activation

After the preprocessing, the grand-averaged HbO and HbR data
were calculated for each condition associated with each task
across all participants. Then, the mean z-scores of HbO and
HbR signals during the stimuli period (for the n-back task:
0 s to 26 s; for the other EF tasks: 0 to 13 s) were calculated
to map the brain activation for each channel. In particular,
we discovered that for most of the cases the task-related
brain regions exhibited increased HbO and decreased HbR
concentrations.59,60

2.5 Network Topological Properties

The functional networks in frontal lobe were constructed, in
which resting-state and task-evoked FC matrices were generated
by computing the Pearson correlations between pairs of chan-
nels for each participant. In addition, the network topological

Fig. 2 The configurations of optodes and channels. (a) The front, posterior, and left view of the optodes
on a participant’s head. (b) The result of spatial registration of the optodes. Red squares denote the
sources and blue squares denote the detectors. (c) The generated channels are labeled with numbers.
(d) The anatomical labels of the channels. Dots with different colors represent different brain regions.
Abbreviations: MC, premotor and supplementary motor cortex; FEF, frontal eye fields; DLPFC, dorso-
lateral prefrontal cortex; and FPA, frontopolar area.
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properties of constructed matrices were analyzed using
GRETNA.61

The network topological properties are further characterized
by seven global parameters and three nodal parameters.62–64 The
global parameters denote the efficiency of the whole network,
which consist of the average clustering coefficient (Cp), average
characteristic path length (Lp), normalized clustering coefficient
(γ), normalized characteristic path length (λ), small-worldness
σ), local efficiency (Eloc), and global efficiency (Eglob). The
nodal parameters represent the efficiency of nodes, which
include the nodal degree (Knod), nodal efficiency (Enod), and
nodal betweenness centrality (BCnod). In brief, Cp and γ mea-
sure the local interconnectivity of a network, whereas Lp and λ
quantify the overall routing efficiency of a network. In addition,
Eloc plays a role similar to the clustering coefficient, whereas
Eglob is inversely related to the characteristic path length.62–64

Further, networks with higher σ are regarded as systems that
are both locally and globally efficient. In contrast, for nodal
topological properties, Knod denotes the number of edges linked
to a node, which measures the association capability of the given
node. However, Enod is inversely correlated with the averaged
shortest path length from a given node to the other nodes,
which measures the nodal efficiency of information transfer.
In addition, BCnod denotes the frequency of a given nodal show-
ing up in a shortest path from one node to another, which exhib-
its the importance of a given node over the information flow. It is
also noted for the present study that the threshold is determined
by the network density (sparsity) of the brain networks, which is
defined by the ratio (S) of the existing edges divided by the
maximum possible edges in the network.65 In addition, the
global properties of brain networks only represent the informa-
tion transmission pattern in frontal lobe, whereas the nodal prop-
erties denote the role of each channel in the information
transmission associated with the frontal lobe network.

Interestingly, previous studies have shown that the resting-
state brain functional networks have prominent small-world
properties as well.27,46,66 In this study, one sample t-tests against
1.1 were performed on the small-worldness of the resting-state
or task-based networks constructed from HbR and HbO data,
respectively. The maximum threshold S was determined as
44% to ensure the prominent small-worldness of both the
networks.67 In addition, the minimum threshold was determined

by the average degree over all nodes Kaverage > 2 lnðNÞ with
N ¼ 32, denoting the number of the nodes, which can guarantee
that a random graph is connected.64 The threshold range deter-
mined by this procedure was 23% ≤ S ≤ 44%.

3 Results

3.1 Behavioral Results

The mean accuracy of the responses and reaction time for cor-
rect responses were, respectively, calculated for each participant.
The accuracy and reaction time in each task were, respectively,
subjected to paired t-test to reveal the performance difference
between the experimental and the control conditions.

The t-test results are summarized in Table 1, which shows
that all experimental cases consumed more reaction time than
the control cases (p < 0.01). Meanwhile, lower accuracy is
respectively detected in the flanker (p ¼ 0.01), go/nono-go
(p < 0.01), and n-back task (marginally significant) as com-
pared to that from the control case.

3.2 Brain Activation

In addition, we compared the differences in brain activation
between the experimental and the control conditions for
each task.

The averaged HbO/HbR time courses for the four EF tasks
are displayed in the Supplementary Material in Figs. S1–S4. The
brain t-map, generated from the activation difference between
the experimental and the control conditions for each task, is
visualized in the first two rows of Fig. 3 by using xjView
toolbox68 and BrainNet Viewer toolbox,69,70 and the detailed
t-test results are provided in Table 2. In addition, the Pearson
correlation is performed to examine the relationship between
the HbO and the HbR activation, and the correlation coefficients
are visualized in the third row of Fig. 3.

Figure 3 and Supplementary Material in Figs. S1–S4 show
that the brain activation differences between the experimental
and the control conditions exhibit different tendencies for the
four tasks although only the flanker and switch tasks exhibit
significant differences. Specifically, the incongruent case in
flanker task induces increased HbO in the bilateral premotor
and supplementary motor cortex (MC), whereas the switch case

Table 1 The t -test results of behavioral data.

Contrast t df p d M1 SE1 M2 SE2

flk_con_acc—flk_incon_acc 3.58 29 0.001 0.92 0.99 0.01 0.92 0.02

gng_go_acc—gng_nogo_acc 4.12 29 <0.001 1.14 0.99 <0.01 0.96 0.01

nbk_b0_acc—nbk_b2_acc 1.92 29 0.065 0.47 0.99 0.01 0.96 0.01

swt_rep_acc—swt_SW_acc 0.37 29 0.715 0.08 0.93 0.01 0.92 0.01

flk_con_rt—flk_incon_rt −8.45 29 <0.001 −0.85 0.57 0.02 0.70 0.03

nbk_b0_rt—nbk_b2_rt −6.80 29 <0.001 −1.61 0.47 0.01 0.60 0.02

swt_rep_rt—swt_SW_rt −5.61 29 <0.001 −0.50 0.95 0.03 1.03 0.03

Note: Abbreviations: acc, accuracy; r t , reaction time; t , t -value of the paired t -test; df , degree of freedom; d , Cohen’s d ; M , mean value, SE,
standard error, 1, 2 means control and experimental cases, respectively; flk, flanker task; con, congruent; incon, incongruent; gng, go/no-go task;
nbk, n-back task; b0, 0-back condition; b2, 2-back condition; swt, switch task; rep, repeat condition; and SW, switch condition.
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in the switch task elicits increased HbO and decreased HbR in
the right FPA and decreased HbO in the left frontal eye fields
(FEFs). The decreased HbR is still observed even after the false
discovery rate (FDR) correction. In addition, although no sig-
nificant difference between the two conditions is revealed for
the go/no-go and n-back tasks, tendencies toward enhanced

HbO activation for the 2-back case are observed across the
task period in Supplementary Material in Fig. S3 as compared
to that from the 0-back in left DLPFC (channels 9, 11, and 21).
In particular, Supplementary Material in Fig. S2 shows that the
no-go case elicits HbR/HbO activation for most channels in the
frontal lobe, which is also comparable to the go case.

Fig. 3 Front view of the brain activation and correlation maps for the four EF tasks. Interpolated t -values
from the contrast between the experimental and the control conditions are rendered on the brain tem-
plates in the first two rows. The bright color with positive t -values demonstrates that the experimental
cases elicit increased HbO/HbR activation, whereas the dark color with negative t -values denotes that
the control cases elicit enhanced HbO/HbR activation. In addition, the significant channels are indicated
by the red arrows. In addition, correlation maps are displayed in the third row, in which the bright color
denotes more positive correlation, whereas the dark color denotes more negative correlation.

Table 2 Summary of the t -test results with regard to the brain activation differences.

Task #ch Label p(fdr) p t df SD d M1 SE1 M2 SE2

HbO Flanker (incon–con) 28 L-MC 0.388 0.033 2.27 24 0.24 0.40 0.18 0.05 0.07 0.05

30 R-MC 0.388 0.048 2.09 24 0.31 0.45 0.22 0.05 0.09 0.06

31 R-MC 0.388 0.029 2.33 24 0.31 0.44 0.19 0.06 0.04 0.07

Switch (swt–rep) 14 L-FEF 0.790 0.049 −2.07 24 0.22 −0.33 0.07 0.05 0.16 0.06

6 R-FPA 0.574 0.018 2.54 24 0.23 0.47 0.33 0.05 0.21 0.05

HbR Switch (swt–rep) 6 R-FPA 0.005 <0.001 −4.50 24 0.22 −0.84 −0.21 0.04 −0.01 0.05

8 R-FPA 0.077 0.005 −3.10 24 0.20 −0.53 −0.07 0.04 0.05 0.05

Note: Abbreviations: #Ch, the label of the channel; incon, incongruent; con, congruent; swt, switch; rep, repeat; L, left hemisphere; R, right hemi-
sphere; t , t -value of the paired t -test; df , degree of freedom; d , Cohen’s d ; M , mean value; SE, standard error (1, 2 means the experimental and
control cases, respectively).
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In addition, the negative correlations between HbO and HbR
activations are clearly identified by the widespread dark color in
the correlation maps in Fig. 3.

3.3 Functional Network Properties

3.3.1 Functional connectivity

The grand-averaged correlation coefficients for each condition
of the four tasks and for the resting state are visualized in the
matrix form in Supplementary Material in Figs. S5 and S6 for
the HbO and the HbR measures, respectively. In addition, the
global and nodal topological properties of networks are calcu-
lated and compared for various test cases.

3.3.2 Small-world properties

Whether the task-based or resting-state networks exhibited
small-world property (namely σ > 1) is inspected in this section.
One sample t-tests are performed on the small-worldness for
the five individual test cases with selected thresholds
(23% ≤ S ≤ 44%). Figure 4 shows that the brain functional net-
works during all test cases exhibit the prominent small-world
property.

3.3.3 Global properties

Subsequently, we calculated the area under property curves
(AUC) over the predetermined thresholds for each test case
and compared the AUC between the networks during the tasks
and at rest, and also between the experimental and the control
conditions for the four tasks. In addition, paired t-tests were per-
formed on all topological properties, including the global and
nodal properties.

First, the global properties of the networks for each individ-
ual test case are compared to those at rest, and the comparison
results are provided in Table 3. Interestingly, Table 3 shows that
the global properties of HbR-based networks are more sensitive
to the task tests as compared to those from the HbO-based ones.
For example, only the 2-back case in n-back task exhibits
decreased Cp and Eloc for HbO-based networks when compared

to those at rest. However, this is not the case for HbR-based net-
works, in which all task-based test cases exhibit decreased local
interconnection including decreased Cp, γ, and Eloc. In addition,
the incongruent case in flanker task also exhibits increased over-
all routing efficiency including decreased Lp and λ, and
increased Eglob as compared to the rest. In contrast, both cases
in the go/no-go task and experimental cases in then-back and
switch tasks exhibit decreased small-worldness (σ).

In addition, we also examined the differences in global prop-
erties of the networks between the experimental and the control
conditions associated with the four tasks. Interestingly, we
discovered that only HbR-based networks exhibited decreased
Eloc½tð24Þ ¼ −2.07; p ¼ 0.05� for the incongruent case in
flanker task.

3.3.4 Nodal properties

We also compared the network nodal property difference
between each task-based test and those from the resting state.
The t-values are visualized in Supplementary Material in
Figs. S7 and S8, and the detailed statistical analysis results
are listed in Supplementary Material in Tables S3 and S4.
We discovered that HbO- and HbR-based networks exhibited
significant differences in nodal properties. For example, signifi-
cantly decreased BCnod was clearly identified in the left MC
(channel 29) for HbO-based networks for all task-based tests,
although it was not that significant for the go case. In contrast,
HbR-based networks showed decreased network efficiency,
including the betweenness, nodal degree, and nodal efficiency
in the left FEF (channels 12 or 14) for all task-based tests
although it was not significant for some nodal properties asso-
ciated with the flanker task.

In addition, we also compared the differences in network
nodal properties between the experimental and the control con-
ditions. The comparison results are given in Table 4. Regarding
the HbO-based networks, the incongruent case from the flanker
task exhibited decreased Knod in the right FPA, and increased
Knod and Enod in the right FEF. In the n-back task, the 2-back
case showed decreased Knod and Enod in the left MC and
increased BCnod in the right FPA, whereas the switch case
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Fig. 4 Small-worldness of the brain network for each test case. Among the selected threshold (sparsity:
23% to 44%), the brain networks that exhibit the small-world property (σ > 1) are labeled with asterisks
with corresponding colors.
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from switch task showed decreased Knod in the left FPA and
decreased Enod in the left FPA and right FEF.

Further, it was observed that the HbR-based networks were
more sensitive to the EF demands. In the flanker task, the incon-
gruent case exhibited increased BCnod, Knod, and Enod in the
right DLPFC, and decreased BCnod in the left FPA and FEF
and right MC, decreased Knod in the right FPA and left FEF,
and deceased Enod in the right FPA. In the n-back task, the
2-back case exhibited increased BCnod in the left DLPFC and
FEF and right FPA. In addition, increased Knod and Enod

were identified in the right DLPFC, whereas decreased ones
were revealed in the left FPA. In the switch task, we discovered
that the anterior part of left DLPFC (channel 10) and its nearby
regions exhibited increased BCnod, Knod, and Enod, whereas the
posterior part of left DLPFC (channel 11) and its nearby regions
exhibited decreased BCnod, Knod, and Enod.

3.4 Relationship between the Brain Activation/
Network Topological Properties and Task
Performance

Subsequently, the Pearson correlation between the cognitive
cost (measured by the increase in reaction time) and the
brain activation/FC was also generated in this study, which
can be used to examine the influence of the brain activation/net-
works on the task performance. As a result, the task-evoked acti-
vation and topological properties of FC were used as the
measures to generate the correlations with the cognitive costs
in each task. In particular, the task-evoked changes were denoted
as the differences in HbO or HbR activation/topological proper-
ties between the experimental and the control conditions,
whereas the cognitive cost was quantified by the relative reac-
tion time between the experimental and the control conditions.

Table 3 Significant changes in global parameters for each condition from each task.

Condition Para. p t df d M1 SE1 M2 SE2

HbO 2-Back Cp <0.01 −3.17 24 −0.85 0.64 0.01 0.68 0.01

Eloc 0.02 −2.57 24 −0.72 0.75 0.01 0.78 0.01

HbR Congruent Gamma 0.03 −2.37 23 −0.77 1.43 0.03 1.58 0.05

Incongruent Cp <0.01 −3.58 23 −1.04 0.61 0.01 0.67 0.01

Lp 0.02 −2.41 23 −0.70 1.62 0.02 1.68 0.02

Lambda 0.01 −2.80 23 −0.77 1.04 0.01 1.07 0.01

Gamma 0.02 −2.48 23 −0.77 1.42 0.03 1.58 0.05

Eloc 0.02 −2.55 23 −0.74 0.76 0.01 0.79 0.01

Eglob 0.02 2.52 23 0.73 0.63 0.01 0.61 0.01

Go Gamma 0.01 −2.93 24 −0.87 1.40 0.03 1.58 0.05

Sigma 0.01 −2.80 24 −0.80 1.32 0.03 1.47 0.04

No-go Gamma 0.01 −2.93 24 −0.78 1.42 0.03 1.58 0.05

Sigma 0.01 −2.65 24 −0.74 1.33 0.03 1.47 0.04

0-Back Cp <0.01 −3.11 24 −0.86 0.61 0.01 0.67 0.01

Gamma 0.03 −2.27 24 −0.70 1.42 0.04 1.58 0.05

Eloc 0.01 −2.99 24 −0.86 0.75 0.01 0.79 0.01

2-Back Cp <0.01 −3.56 24 −0.88 0.62 0.01 0.67 0.01

Gamma 0.02 −2.54 24 −0.69 1.44 0.03 1.58 0.05

Sigma 0.05 −2.10 24 −0.54 1.37 0.03 1.47 0.04

Eloc 0.02 −2.56 24 −0.73 0.76 0.01 0.79 0.01

Repeat Cp 0.03 −2.28 23 −0.74 0.63 0.01 0.67 0.01

Gamma 0.03 −2.32 23 −0.63 1.44 0.03 1.57 0.05

Switch Gamma 0.02 −2.54 23 −0.66 1.44 0.03 1.57 0.05

Sigma 0.04 −2.19 23 −0.59 1.35 0.03 1.46 0.04
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Table 4 Summary of the t -test results with regard to the AUC of nodal parameters for each task.

Task Para. Label #Ch p(FDR) p t df d M1 SE1 M2 SE2

HbO Flanker (incon-con) K R-FPA 6 0.76 0.05 −2.09 24 −0.25 10.35 1.00 11.60 0.98

K R-FEF 19 0.76 0.03 2.30 24 0.17 11.05 1.18 10.02 1.19

E R-FEF 19 0.65 0.03 2.30 24 0.18 0.56 0.04 0.52 0.04

N-back (b2-b0) BC R-FPA 6 0.81 0.03 2.38 25 0.48 9.38 1.71 5.75 1.18

K L-MC 23 0.57 0.02 −2.47 25 −0.31 6.57 1.13 8.41 1.17

E L-MC 23 0.99 0.04 −2.15 25 −0.36 0.43 0.05 0.51 0.04

Switching (swt-rep) K L-FPA 3 0.66 0.04 −2.20 24 −0.19 9.86 1.24 11.01 1.17

E L-FPA 3 0.59 0.04 −2.21 24 −0.16 0.53 0.05 0.57 0.04

E R-FEF 25 0.43 0.01 −2.67 24 −0.19 0.52 0.04 0.56 0.04

HbR Flanker (incon-con) BC L-FPA 1 0.32 0.03 −2.39 24 −0.67 8.53 1.46 16.73 3.15

BC L-FEF 13 0.32 0.05 −2.07 24 −0.28 9.01 1.72 11.83 2.26

BC R-DLPFC 16 0.32 0.03 2.30 24 0.59 25.75 2.73 17.15 3.10

BC R-MC 31 0.25 0.01 −2.90 24 −0.62 12.10 2.28 21.90 3.84

K R-FPA 6 0.29 0.02 −2.53 24 −0.52 12.37 0.60 13.91 0.59

K L-FEF 13 0.46 0.04 −2.14 24 −0.38 10.07 0.58 11.42 0.83

K R-DLPFC 16 0.13 <0.01 3.19 24 0.66 14.02 0.57 11.93 0.70

E R-FPA 6 0.41 0.03 −2.37 24 −0.48 0.67 0.01 0.70 0.01

E R-DLPFC 16 0.03 <0.01 3.78 24 0.76 0.70 0.01 0.65 0.02

N-back (b2-b0) BC R-FPA 6 0.16 0.01 2.78 25 0.81 21.47 3.20 10.62 1.87

BC L-DLFPC 10 0.41 0.05 2.10 25 0.54 19.94 2.76 13.49 1.78

BC L-FEF 14 0.16 0.01 2.79 25 0.74 18.69 3.06 9.59 1.54

K L-FPA 1 0.08 <0.01 −3.36 25 −0.65 10.82 0.91 13.51 0.71

K R-DLPFC 24 0.62 0.04 2.18 25 0.51 12.71 0.63 10.89 0.78

E L-FPA 1 0.14 <0.01 −3.15 25 −0.69 0.63 0.02 0.69 0.01

E R-DLPFC 24 0.57 0.05 2.10 25 0.49 0.67 0.01 0.64 0.01

Switching (swt-rep) BC L-DLFPC 10 0.43 0.03 2.25 24 0.35 17.25 2.04 13.32 2.48

BC L-DLFPC 11 0.43 0.03 −2.38 24 −0.44 9.70 1.84 14.38 2.38

BC L-MC 23 0.43 0.04 −2.12 24 −0.50 8.19 1.33 13.16 2.48

K L-DLFPC 10 0.53 0.05 2.07 24 0.49 13.88 0.58 12.36 0.66

K L-DLFPC 11 0.53 0.03 −2.36 24 −0.30 9.70 0.85 10.96 0.81

K R-FEF 17 0.53 0.04 2.18 24 0.45 8.99 0.79 7.50 0.51

E L-DLFPC 10 0.49 0.04 2.17 24 0.50 0.70 0.01 0.67 0.01

E L-DLFPC 11 0.10 <0.01 −3.30 24 −0.31 0.61 0.02 0.64 0.02

E L-FEF 13 0.49 0.05 −2.11 24 −0.37 0.62 0.01 0.65 0.02
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Note that the go/no-go task was excluded from this analysis
because no reaction time was measured in no-go condition.
We discovered that only HbR activation (but not HbO) exhibited
correlations with the cognitive cost. In particular, in the flanker
task, the cognitive cost showed positive correlation with HbR
changes in the left FEF, whereas it showed negative correlation
in the right FPA. In the n-back and switch tasks, positive cor-
relations were revealed in the right DLPFC. However, after the
FDR correction, no significant correlation was identified.

In contrast, for both HbO-based and HbR-based networks,
the nodal (but not global) topological properties changes
showed significant relationships with the cognitive cost. For
example, for HbO-based networks, the cognitive cost was pos-
itively correlated with Knod in the left FPA and DLPFC, and
positively correlated with Enod in the left DLPFC for flanker
task, although it showed negative correlation with BCnod in
the left DLPFC and MC. Interestingly, in the n-back task, neg-
ative correlations were identified for Knod in the left FEF and for
BCnod in the left DLPFC. However, in the switch task, the cog-
nitive cost was positively correlated with Knod in the right FEF,
whereas negative correlations were revealed for Knod in the right
DLPFC, for Enod in the left MC, and for BCnod in the left FEF
and MC and right FPA. In contrast, after the FDR correction,
only negative correlation for BCnod was identified in the left
DLPFC for flanker task.

In addition, for HbR-based networks, the cognitive cost
showed negative correlation with BCnod in the left DLPFC
and right MC for flanker task. In the n-back task, positive cor-
relations were discovered between Knod and cognitive cost in
right MC and FEF and negative ones for Enod in the bilateral
DLPFC. In the switch task, positive correlations were identified
for Knod and Enod in the left FPA, whereas negative correlations
were identified for Knod and Enod in the left MC, and for BCnod

in the left DLPFC and right MC. However, this is not the case
after the FDR correction, in which no significant correlation was
identified.

3.5 Relationship between Brain Activation and
Networks Topological Properties

Pearson correlation analysis was performed to examine the rela-
tionship between the brain activation and the networks topologi-
cal properties. In particular, we correlated the topological
properties of resting-state networks, and task-based network
topological properties with task-based brain activation.

Interestingly, the brain activation during the EF tasks exhib-
ited significant correlations with the network topological proper-
ties for most of the channels. However, after the FDR correction,
it was clearly observed that the brain activation during flanker,
n-back, and switch tasks only showed correlation with the
intrinsic network properties. In contrast, in the go/no-go task,
the activation not only exhibited the correlation with the topo-
logical properties derived from intrinsic networks but also
exhibited the properties derived from task-evoked and HbR-
based networks.

In particular, in the flanker task, the activation in bilateral
DLPFC and left FEF showed negative correlation with λ for
HbO-based intrinsic networks, whereas the activation in left
MC was positively correlated with Knod for the same resting-
state networks.

In the n-back task, the activation in right FEF was positively
correlated with Knod for HbO-based intrinsic networks. In addi-
tion, the activation in right MC was positively correlated with

BCnod for HbR-based intrinsic networks, whereas the activation
in left MC was negatively correlated with BCnod from the same
network. In the switch task, the activation in left FPA was neg-
atively correlated with Cp, Lp, and λ, whereas it was positively
correlated with Eglob in HbR-based intrinsic networks.

In the go/no-go task, the activation in left FEF was positively
correlated with Knod and Enod for HbO-based and task-evoked
networks. In addition, the activation in left MC was negatively
correlated with Cp and Eloc for HbR-based and task-evoked net-
works. Moreover, the activation in right FEF was positively cor-
related with γ for the HbR-based intrinsic networks, whereas the
activation in right FEF and DLPFC was positively correlated
with σ from the same networks.

4 Discussion
To the best of our knowledge, this is the first study that system-
atically explored the differences in frontal HbO/HbR-based acti-
vation and networks topological properties between various EF
components by testing the same group of participants with
fNIRS. In particular, we inspected the relationship between
the activation/networks topological properties and the task per-
formance. In addition, the relationship between the brain acti-
vation and the networks topological properties was also
carefully examined as a synergistic characteristic, which can
serve as an index to inspect the difference between various
EFs tasks in frontal cortex.

4.1 Differences in Behavioral Performance and
Brain Activation/Networks Topological
Properties

Consistent with previous studies,1,71 the present behavioral
results showed that the experimental condition consumed
more cognitive effort than the control condition, which was
demonstrated by both the low accuracy and the slow response
for the experimental condition.

In addition, the negative relationship between HbO and HbR
activation was well documented in previous studies,59,60 which
was also confirmed in the present study, as indicated by the cor-
relation maps in Fig. 3. Moreover, different activation tenden-
cies were identified for the four EF tasks, indicating that the
subcomponents of EFs were associated with different neural
substrates. Specifically, the attentional inhibition elicited
enhanced activation in MC. In contrast, the no-go case elicited
comparable activation with the go case in frontal lobe, which
confirmed the hypothesis that the response inhibition was a
facet of goal-oriented response selection rather than passive
inhibition.11,72 In particular, the working memory was associated
with the activation in left DLPFC, whereas the cognitive flex-
ibility was correlated more with the activation in right FPA.

More important, the network properties provided more com-
prehensive information to characterize the differences between
various EF cognitive processes. In particular, the topological
properties of HbO-based networks showed the differences
from those from HbR-based networks. It was discovered that
the HbR-based networks were highly clustered in the frontal
lobe as compared to HbO-based ones. Moreover, both the
HbO-based and HbR-based networks exhibited prominent
small-world properties whether at test or during task.

For global properties of HbR-based networks, the task-
evoked networks exhibited predominantly decreased network
efficiency as compared to the intrinsic networks, except that
of the incongruent case in the flanker task, exhibiting increased
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global efficiency. However, for HbO-based networks, only the
2-back case in n-back task exhibited decreased local efficiency.
The new results indicated that HbR-based network properties
were better indexed to characterize the network difference
between various EF components. In addition, decreased network
efficiency demonstrated that different brain regions worked
independently to support the goal-oriented behaviors, which
was also confirmed by the highly clustered FC displayed in
the matrix of correlation coefficients in Supplementary Material
in Fig. S6. Interestingly, unlike other EF tasks, only the incon-
gruent case in flanker task exhibited decreased local efficiency
as compared to the control condition. In addition, only the
incongruent case exhibited increased global efficiency, which
indicated higher routing efficiency. Our findings also suggested
that the attentional inhibition was achieved in a more integra-
tive way.

Regarding nodal properties, both the HbO-based and the
HbR-based networks exhibited decreased network efficiency
during EF tasks, as compared to those at rest. However, in
the HbO-based networks, the left MC decreased its importance
over the information flow, whereas in the HbR networks, the left
FEF exhibited decreased network efficiency for all three nodal
properties. Consistent with the global properties results, the
nodal property analysis revealed the reorganization of the func-
tional networks during EF tasks, in which HbO-based and HbR-
based networks exhibited decreased network efficiency in differ-
ent brain regions.

Importantly, when the nodal property differences were
inspected between the experimental and the control conditions,
multiple regions exhibited the significance, which demonstrated
that the nodal properties were better indicators than the activa-
tion to characterize the neural basis-supporting EF tasks. In par-
ticular, HbO-based networks exhibited increased network
efficiency including “importance over the information flow
(BCnod),” “association capability (Knod),” and “efficiency of
the information transfer (Enod)” in the right DLPFC, whereas
they exhibited decreased network efficiency in FPA, MC, and
FEF during flanker task. The results revealed that the right
DLPFC, although not significantly activated, played an impor-
tant role in the organization of HbO-based networks supporting
the attentional inhibition. In addition, in the n-back task, the
right FPA played an essential role over the information flow dur-
ing the 2-back case. Moreover, the left FPA exhibited decreased
association capability and information transfer efficiency for the
switch case in switch task.

Likewise, nodal differences in multiple channels between the
experimental and the control conditions were also identified for
HbR-based networks, which were in line with those of the HbO-
based networks. In particular, similar to HbO-based networks,
HbR-based networks exhibited increased network efficiency in
the right DLPFC during flanker tasks. This finding confirmed
the important role of the right DLPFC during attentional inhib-
ition. Moreover, the n-back task also exhibited increased impor-
tance in the left DLPFC and FEF associated with HbR-based
networks, in addition to the right FPA. These results were con-
sistent with the previous studies emphasizing the role of left
DLPFC in working memory.73,74 In the switch task, decreased
nodal degree and efficiency were also observed in the left FPA
and right FEF although no significant difference was identified
between the two conditions. Importantly, in addition to the acti-
vation of DLPFC associated with cognitive flexibility,75 we also
discovered increased network efficiency in the anterior part of

left DLPFC and decreased network efficiency in the pos-
terior part.

Importantly, for the go/no-go task, the no-go condition
exhibited identical brain activation and network properties
with the go case. Our findings provided strong evidence that
the response inhibition was a facet of goal-oriented response
selection rather than passive cognitive inhibition.

4.2 Correlations between Network Properties/Brain
Activation and Behavioral Performance

Further, we correlated the activation and network properties
with behavioral performances, which were measured by the cog-
nitive cost. Interestingly, significant correlations were revealed
between network topological properties and behavioral perfor-
mances. However, for activation, only the HbR case showed cor-
relations with the behavioral performance. For example, in the
flanker task, decreased HbR activation in the left FEF was asso-
ciated with fast response, whereas decreased HbR activation in
the right FPAwas related to slow response. In addition, in the n-
back and switch tasks, decreased HbR activation in the right
DLPFC was associated with faster response. However, after
the FDR correction, no significant correlation was identified.

More important, we discovered that the nodal topological
properties, rather than global properties, of HbO-based and
HbR-based networks exhibited significant correlations with
the cognitive cost, which indicated that the nodal properties
were more sensitive to the cognitive cost changes. Our finding
was in line with a previous study, which also showed no signifi-
cant correlation between the global topological properties and
the behavioral performance.27

Interestingly, although the left MC exhibited decreased HbO-
based network efficiency during task when compared with that
at rest, its importance over the information flow enhanced the
performance in the flanker task, its association capability was
correlated with faster response in n-back task, and its efficiency
of information transfer and importance over the information
flow were associated with better performance in switch task.
As a result, the left MC played a key role in the function of
frontal networks, which promoted the behavioral performance.

In HbR-based networks, the importance of left DLPFC and
right MC over the information flow was associated with better
performance during flanker task. In addition, in the n-back task,
the association capability in right MC and FEF inhibited the
behavioral performance, whereas the information transfer effi-
ciency in bilateral DLPFC promoted the performance. In the
switch task, the association capability and nodal efficiency in
left FPA were associated with poor performance, whereas
these properties in the left MC promoted the performance. In
addition, the importance of left DLPFC and right MC was
also associated with better performance.

4.3 Relationships between Brain Activation and
Networks Topological Properties

Finally, we generated the correlations between the activation and
the networks topological properties, in which multiple correla-
tions were identified. For example, in the flanker, n-back, and
switch tasks, the activation was mainly modulated by the intrin-
sic network properties. These findings are in line with the pre-
vious reports that the brain FC during task is modulated
primarily by the intrinsic resting-state network architectures,25

and the resting-state networks can predict the brain activation
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and behavioral performance associated with working memory.76

In addition, the activation during the go/no-go task was not only
shaped by the intrinsic network but also regulated by the task-
evoked and HbR-based networks.

In addition, in the flanker task, the overall routing efficiency
of networks was associated with increased HbO activation in
bilateral DLPFC and left FEF. In addition, the association
capability in left MC also enhanced the HbO activation. In
the n-back task, the association capability of right FEF showed
the positive relationship with the HbO activation; the importance
of the right MC showed the positive correlation with the HbR
activation, whereas the importance of the left MC exhibited the
negative correlation with HbR activation. In the switch task, the
local efficiency was associated with decreased HbR activation in
the left FPA, whereas the global efficiency was associated with
increased HbR activation. In addition, for the task-evoked net-
works during go/no-go task, the association capability and nodal
efficiency in left FEF showed positive correlation with the HbO
activation, whereas the local efficiency decreased the HbR acti-
vation in left MC. In addition, for the intrinsic network during
go/no-go task, the local efficiency enhanced the HbR activation
in right FEF, whereas the small-worldness increased the HbR
activation in right FEF and DLPFC.

5 Conclusions
A systematical investigation of brain activation and FC patterns
during different EF tasks was performed. Our findings demon-
strate that the fNIRS is a sufficient technique to characterize the
topological organization of brain networks and its link with the
activation. In particular, linking the neural activation to the topo-
logical organization in frontal lobe can serve as synergistic index
to examine the difference between various EF tasks, which
paves a new way toward a comprehensive understanding of neu-
ral basis underlying the EFs.
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