
Abnormal dynamic functional
connectivity and brain states in
Alzheimer’s diseases: functional
near-infrared spectroscopy study

Haijing Niu
Zhaojun Zhu
Mengjing Wang
Xuanyu Li
Zhen Yuan
Yu Sun
Ying Han

Haijing Niu, Zhaojun Zhu, Mengjing Wang, Xuanyu Li, Zhen Yuan, Yu Sun, Ying Han, “Abnormal
dynamic functional connectivity and brain states in Alzheimer’s diseases: functional near-infrared
spectroscopy study,” Neurophoton. 6(2), 025010 (2019), doi: 10.1117/1.NPh.6.2.025010.



Abnormal dynamic functional connectivity
and brain states in Alzheimer’s diseases:
functional near-infrared spectroscopy study

Haijing Niu,a Zhaojun Zhu,a,† Mengjing Wang,a,† Xuanyu Li,b Zhen Yuan,c Yu Sun,b,* and Ying Hanb,d,e,f,*
aBeijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research,
Beijing, China

bXuan Wu Hospital of Capital Medical University, Department of Neurology, Beijing, China
cUniversity of Macau, Faculty of Health Sciences, Macao, China
dBeijing Institute for Brain Disorders, Center of Alzheimer’s Disease, Beijing, China
eBeijing Institute of Geriatrics, Beijing, China
fNational Clinical Research Center for Geriatric Disorders, Beijing, China

Abstract. Communication within the brain is highly dynamic. Alzheimer’s disease (AD) exhibits dynamic pro-
gression corresponding to a decline in memory and cognition. However, little is known of whether brain dynamics
are disrupted in AD and its prodromal stage, mild cognitive impairment (MCI). For our study, we acquired high
sampling rate functional near-infrared spectroscopy imaging data at rest from the entire cortex of 23 patients with
AD dementia, 25 patients with amnestic mild cognitive impairment (aMCI), and 30 age-matched healthy controls
(HCs). Sliding-window correlation and k-means clustering analyses were used to construct dynamic functional
connectivity (FC) maps for each participant. We discovered that the brain’s dynamic FC variability strength (Q)
significantly increased in both aMCI and AD group as compared to HCs. Using the Q value as a measurement,
the classification performance exhibited a good power in differentiating aMCI [area under the curve (AUC ¼
82.5%)] or AD (AUC ¼ 86.4%) from HCs. Furthermore, we identified two abnormal brain FC states in the
AD group, of which the occurrence frequency (F ) exhibited a significant decrease for the first-level FC state
(state 1) and a significant increase for the second-level FC state (state 2). We also found that the abnormal
F in these two states significantly correlated with the cognitive impairment in patients. These findings provide
the first evidence to demonstrate the disruptions of dynamic brain connectivity in aMCI and AD and extend the
traditional static (i.e., time-averaged) FC findings in the disease (i.e., disconnection syndrome) and thus provide
insights into understanding the pathophysiological mechanisms occurring in aMCI and AD. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.2.025010]
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1 Introduction
One of the most common neurodegenerative diseases, Alzheimer’s
disease (AD) is characterized as a progressive decline in memory
and other brain cognitive functions, likely caused by impaired
structural integrity1,2 or abnormal functional connectivity (FC)
among the nodes of interconnected brain regions or circuits.3–5

In addition, amnestic mild cognitive impairment (aMCI) is rec-
ognized as a transition state in the AD continuum, which exhibits
a confirmed high risk (10% to 15%) of progressing to AD.6

Interestingly, accumulating evidence also shows that AD/aMCI
is a disconnection syndrome.7–9

To date, FC for identifying the cognitive impairment in
aMCI/AD has been widely performed in a time-averaged way,
assuming that FC networks are spatiotemporally invariant (i.e.,
static) during task or at rest. However, constructed static
networks might miss the dynamic features of brain activation
or connectivity. Interestingly, recent advances in the analysis
approach for dynamic FC have opened an avenue for improving

characterization of associated intrinsic brain activity.10–15 The
time-varying or dynamic FC has been depicted by the temporal
variability of FC at each connection,16–18 in which the transition
dynamics between major FC patterns, known as FC states, show
to be stable for a short period of time and reproducible across
time and subjects.19 More importantly, recent research using
these features of dynamic FC to inspect alterations in brain
dynamics through both normal development20,21 and diseased
progression,22,23 suggests that the temporal variability of FC
is possibly related to changes in cognitive states.24 However,
it is yet unclear whether the alterations also emerge in the
time-varying properties of FC of AD/aMCI and whether the
time-varying properties of FC can serve as a neuromarker of
AD/aMCI.

As a result, it is hypothesized in this study that the time-
varying properties of FC should exhibit significant differences
between AD/aMCI patients and healthy controls (HCs). To test
this hypothesis, functional near-infrared spectroscopy (fNIRS)
recordings were performed to inspect the spontaneous neural
activity in 23 patients with AD dementia, 25 patients with aMCI,
and 30 HCs. fNIRS is an emerging neuroimaging technique
that can be used in a portable, comfortable, and quiet way, with
few body constraints. fNIRS relies on the hemodynamic varia-
tions in oxygenated (HbO), deoxygenated (HbR), and total
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hemoglobin (HbT) to infer brain activation and networks. The
fNIRS imaging provides a relatively higher temporal sampling
rate (50 Hz in the current study) than traditional fMRI scanning,
which facilitates elaborate characterization of dynamic brain
connectivity in patients. Furthermore, the fNIRS technique is
an ideal imaging tool for elderly participants including AD
patients, who may have cognitive impairment and difficulties
performing the tests. As such, we adopted fNIRS imaging data
and combined sliding time window correlation and k-means
clustering analysis to characterize brain dynamic FC and brain
connectivity states for the three groups. Specifically, we focused
on exploring the alterations in both brain FC dynamics and brain
FC states in patients with aMCI and AD, as well as their possible
association with clinical or behavioral variables.

2 Materials and Methods

2.1 Participants

From May 2016 to August 2017, 23 AD dementia patients, 25
aMCI patients, and 30 sex-, age-, and education-matched HCs
participated in this study. All participants were right-handed
Han Chinese with normal or corrected-to-normal version, who
provided written informed consent for inclusion prior to the
study. All clinical tests were approved by the Ethics Committee
of the Beijing Normal (Beijing, China) and were then carried out
as a standardized clinical evaluation, including a medical history
interview and a battery of neuropsychological tests. The neuro-
psychological tests consisted of the Chinese version of the mini-
mental state examination (MMSE),25 the Beijing version of
Montreal cognitive assessment (MoCA),26 clinical dementia
rating (CDR), the auditory verbal learning test (AVLT),27

Hachinski ischemic scale (HIS), Hamilton depression rating
scale,28 the center for Epidemiologic Studies depression scale,29

and activities of daily living scale. Patients with aMCI and AD
dementia were recruited from the memory clinic of the
Neurology Department, Xuan Wu Hospital, Capital Medical
University (Beijing, China), whereas the HCs were recruited
from the local community by advertisements. The diagnoses
of aMCI and AD dementia were determined by the consensus
of two experienced neurologists according to the published
criteria from Petersen et al.30 and National Institute on Aging-
Alzheimer’s Association,31 respectively. For details, the inclu-
sion criteria for aMCI were as follows: (1) a memory complaint
confirmed by an informant; (2) cognitive decline in a single
domain or multiple domains; abnormal objective cognitive
impairment documented by scores falling 1.5 SD below the
age and education matched-specific norms on standard neuro-
psychological tests; (3) CDR score of 0.5; and (4) being free
from dementia according to the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition, revised. The inclu-
sion criteria for HCs were: (1) no complaint of memory or other
cognitive impairment, (2) CDR score is 0, and (3) no severe vis-
ual or auditory impairment. All the participants were excluded
if they demonstrated: (1) a clear history of stroke; (2) depression
(Hamilton depression rating scale score ≥24 points); (3) other
nervous system diseases that can cause cognitive impairment
(such as brain tumors, Parkinson’s disease, encephalitis, or epi-
lepsy); (4) traumatic brain injury; (5) other systemic diseases
that can cause cognitive impairment, such as thyroid dys-
function, severe anemia, syphilis, and HIV; and (6) histories of
psychosis or congenital mental growth retardation.

2.2 fNIRS Data Acquisition

The fNIRS scanning was conducted in a dimly lit room in Xuan
Wu hospital. All participants were instructed to sit in a comfort-
able chair and remain motionless with their eyes closed
[Fig. 1(a)], to avoid sleeping, and not to think about anything.
The fNIRS data were acquired using a CW6 optical imaging
system (CW6, Techen Co., Massachusetts) with a 46-channel
array of optodes. This array consisted of 12 light emitters and
24 optical detectors [Figs. 1(b) and 1(c)], each of which detected
the NIR light of its neighboring/surrounding emitters. The
sources and detectors were alternately placed on each partici-
pant’s right and left hemispheres with an interoptode distance
of 3.2 cm. The bottom column of the probe array was placed
along the inion reference point according to the international
10/20 system32,33 so that the midpoint of the lower edge of the
array was placed directly above the inion. The probe positioning
was examined and adjusted to ensure consistency of the posi-
tions among the participants. Resting state was defined as no
specific cognitive task during the fMRI scanning. The resting-
state fNIRS data acquisition lasted ∼11 min for each individual
participant.

fNIRS data from individual channels were acquired at two
different wavelengths (690 and 830 nm) with a sampling rate
of 50 Hz. The signal quality was evaluated using signal-to-noise
ratio, which was calculated as the ratio between mean signal and
stand deviation of the raw signal on 690 and 830 nm, respec-
tively. Generally, the signal was acceptable for the signal-to-
noise ratio larger than 2 Hz. Changes in oxygenated (HbO),
deoxygenated (HbR), and total hemoglobin (HbT) signals were
generated by using the modified Beer–Lambert law.34 The HbO
signal was primarily analyzed for the present study due to its
high signal-to-noise in the correlation with regional cerebral
blood flow.35 The HbR results were also analyzed and presented
in the supplement as a complement.

For each individual’s HbO dataset, a temporal independent
component analysis (ICA) was conducted to remove typical
motion-induced artifacts and systematic physiological noise.36–38

Specifically, these noise components were identified according
to the components’ temporal profiles, spatial maps, and power
spectra. A component would be considered noise if it met one
of the following conditions:37 (1) the corresponding temporal pro-
file included sudden jumps, slowly varied U or inverted U-shaped
spike, or numerous intercurrent quick spikes (e.g., motion arti-
facts); (2) the dominant frequency of power spectra of the com-
ponent was outside the range of 0.01 to 0.1 Hz; and (3) the spatial
map of the component presented a global and spatially dispersive
pattern (e.g., physiological interference). Once the noise compo-
nents were identified, the concentration signal was subsequently
reconstructed with these particular components eliminated from
the original hemoglobin time course by replacing zero in the cor-
responding column of mixing matrix.38 After the ICA procedure,
a bandpass filter from 0.01 to 0.1 Hz was implemented to the
denoised hemoglobin signals and then 10-min recordings (i.e.,
30,000 time points) from the continuous time courses were
extracted for later analysis.

2.3 Dynamic FC Computation

Figure 1(d) illustrates the dynamic FC analysis steps. Similar to
the approach adopted by Allen et al.19 and in our previous
study,39 a sliding window-based correlation approach was first
utilized to generate a series of dynamic FC maps. Specifically,
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for time series (i.e., 10 min) on all measurement channels, 60-s
time windows were selected and then shifted in an increment of
1 s along the entire time length. The FC within each time win-
dow was quantitatively calculated between any pair of brain
regions using the Pearson correlation strategy. The 10-min
measurement duration and a 60-s time window brought about
541 sliding time windows and thus constructed 541 dynamic
FC maps. To quantify the whole-cortex FC fluctuation across
a series of sliding time windows, we also calculated the FC vari-
ability index (Q)19,39 on each participant. Specifically, we first of
all calculated the spectrum power of the dynamic FC time series
(with Fourier analysis),19 and then the area under the curve
(AUC) of the power spectrum across the low frequency
(<0.1 Hz) band was quantified as the FC variability index,
Q, to mark time-varying characteristics of dynamic FC. A larger
Q value denoted more variable FC, whereas a smaller Q value
represented less variable FC. Of note, the Q index takes into
account the information of power and amplitude in the fre-
quency domain by filtering the potential fluctuating noises con-
tained in the high frequencies (>0.1 Hz), which is slightly
different from a simple measure of standard deviation.40 We

point out that the static FC was also calculated based on total
signal length with Pearson correlation analysis.

2.4 Dynamic FC Differences between the Various
Groups

To localize the specific pairs of regions in which the dynamic FC
was altered in patient groups, we introduced a network-based
statistic (NBS) approach41 to compare group difference in FC
variability Q. The identified alternation in the value of index
Q was shown in the brain cortex according to their different
spatial connectivity patterns: homotopic connectivity, long intra-
hemispheric connectivity, short intrahemispheric connectivity,
and heterotopic connectivity. The details for comparison can
be found in Sec. 2.6. The receiver operating characteristic
(ROC) curve approach was further used to evaluate whether the
Q metric might serve as a biomarker for diagnosing patients
from HCs. ROC is a graphical plot that illustrates the perfor-
mance of a binary classifier, which was created by plotting the
sensitivity against the 1-specificity at various thresholds.

Fig. 1 (a) Photograph of fNIRS data collection from a participant. (b) The arrangement of the 46
measurement channels across the whole head. The red and green solid circles represent sources and
detectors, respectively. The digits represent the positions of the measurement channels. (c) Anatomical
position of each measurement channel. (d) Illustration of dynamic FC analysis steps. The spectrum
power of the dynamic FC time series for each channel was first extracted. The AUC of the power
spectrum across the low frequency (<0.1 Hz) band was then used as a dynamic FC variability index
to mark time-varying characteristics of dynamic FC. K-means clustering was utilized to identify brain
FC states.
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2.5 Detection and Characterization of FC States

To detect brief FC patterns (i.e., FC states), we applied a
k-means clustering algorithm to the windowed correlation
matrices concatenated across all participants. The clustering
procedure was the same as the one used by Allen et al.19

The number of clusters (k) was determined by using the elbow
criterion of the cluster validity index that was denoted as the
ratio between between-cluster distances to the within-cluster
distance. For each cluster, we separately calculated the averaged
FC map to represent the identified brain FC state. We also cal-
culated the mean of the standard deviation among these FC
maps, which characterized the FC variance within each brain
state (i.e., cluster).

To demonstrate the difference in FC states between the
patients and HC groups, we further introduced the metric of
occurrence frequency, F, to characterize the occurrence of
each FC state during dynamic brain activity. The metric F was
defined as: F ¼ Ni∕Nt, in which Ni is the number of windows
classified into a particular state and Nt is the total number of the
sliding time windows for a given time series. As such, for each
participant, the occurrence frequency (F) in each FC state could
be quantified. For each FC state, the mean F value was used as
a statistical index for the comparison between the patients and
heathy controls.

2.6 Statistical Analysis

2.6.1 Group differences in clinical characteristics

To test the group differences in age, gender, years of education,
and neuropsychological scores, we analyzed the data with sep-
arate one-way analysis of variance (ANOVA). Posthoc pairwise
comparisons were then performed using t tests. The gender data
were analyzed using the χ2 test.

2.6.2 Group differences in dynamic FC variability

To localize the specific pairs of regions in which the dynamic FC
variability was altered in the aMCI or AD patients, we used a
NBS approach.41 The NBS is a nonparametric test that controls
for familywise error rate (FWER) at the network level using per-
mutation testing. Due to the stringent FWER correction at the
network level, no additional multiple comparison correction
was performed for NBS analyses. Currently, the NBS approach
has been used to identify abnormal brain connectivity circuitry
in depression,42,43 Schizophrenia,44 AD,4 and attention-deficit/
hyperactivity disorder.45

In this study, the NBS analysis primarily consisted of several
steps. First, we performed two-sample one-tailed t-tests in an
element-by-element manner on the temporal variability of all
functional connections between aMCI and HC groups. Then,
a primary cluster-defining threshold (e.g., p < 0.05 and
p < 0.005 in this study, respectively) was used to identify supra-
threshold connections, in which the connected components
and the number of connections included in these components
were determined. Third, to estimate the significance for each
component, a null distribution of connected component size
was derived empirically using a nonparametric permutation
approach (10,000 permutations). For each permutation, all sub-
jects were reallocated randomly into two groups, and two-
sample one-tailed t-tests were conducted for the same set of
connections mentioned above. The same primary threshold (p <
0.05 and p < 0.005, respectively) was then used to generate

suprathreshold connections within which the maximal con-
nected component size was recorded. Finally, for a connected
component of size N found in the right grouping of HCs and
patients, the corrected p-value was determined by calculating
the proportion of the 10,000 permutations for which the maxi-
mal connected component was larger than N. A similar analysis
for group difference between the AD and HC groups was also
conducted. It is noted that before the permutation tests, the
effects of age, gender, and years of education were removed
by a regression analysis.

2.6.3 Group differences in FC state expressions

To test the group differences in FC state properties under a spe-
cific state, comparisons were performed among the three groups
using univariate ANCOVAs. Posthoc pairwise comparisons
were then performed using a general linear model. The effects
of age, gender, and years of education were adjusted for all of
these analyses. A value of p < 0.05 was considered significant.

2.6.4 Relationships between clinical variables and FC
variability or FC states

We conducted analysis of multiple linear regressions in the par-
ticipant groups to inspect the relationship between clinical var-
iables and brain index. Figures 3(c) and 3(d) show the scatter
plots with the association of clinical variables (MMSE score)
and the values Q of FC variability. Figure 7 shows the scatter
plots with the association of clinical variables (MMSE score,
AVLT-recognition, AVLT-delayed recall, and MoCA) and the
F values of FC state occurrence.

3 Results

3.1 Demographic and Clinical Characteristics

The demographic data are shown in Table 1. There were no
significant differences in age [Fð2;75Þ ¼ 1.891; p ¼ 0.16],
gender (p ¼ 0.40), or years of education [Fð2;75Þ ¼ 1.07; p ¼
0.35] among the three groups. However, the patient group
(aMCI and AD) had significantly lower scores on the MMSE
[Fð2;75Þ ¼ 51.51, p < 0.001], MoCA [Fð2;75Þ ¼ 53.80, p <
0.001], AVLT-immediate recall [Fð2;75Þ ¼ 58.34, p < 0.001],
AVLT delayed recall [Fð2;75Þ ¼ 118.52, p < 0.001], and
AVLT-recognition [Fð2;75Þ ¼ 65.26, p < 0.001] than the HC
group (Table 1).

3.2 Visualization of Dynamic FC Variability

Using sliding window correlation analysis and Fourier analysis,
we obtained quantitative FC variability Q at each connection
for the HCs, aMCI, and AD groups, respectively [Fig. 2(a)].
Visually, the FC variability was obviously increased in partic-
ipants during the progression of HCs to aMCI to AD, with most
of the connections showing larger Q in AD and smaller Q in
HCs [Fig. 2(b)]. Quantitatively, the results also support the
observation that averaged Q values across all 1035 (i.e., 46 ×
45∕2) connections were 4.2� 0.16 for HCs, 4.5� 0.18 for
aMCI, and 4.7� 0.17 for AD. One possible explanation for
the larger Q in AD is that AD patients could primarily stay
in an aberrant brain state while that brain state could show larger
brain FC fluctuations. The static FC was also calculated for the
HCs, aMCI, and AD groups [Fig. 2(c)]. Visually, the static FC
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Fig. 2 (a) Maps of FC variability for HC, aMCI, and AD groups, respectively. The Q values represent the
variability of dynamic FC over time. (b) One-dimensional representation of the FC variability (Q) for these
three groups. (c) Maps of static FC for HC, aMCI, and AD groups, respectively. The values represent
the static functional connectivity strength.

Table 1 Demographics and clinical characters of the participants.

Characteristics HC aMCI AD p Value

N (M/F) 30 (11/19) 25 (13/12) 23 (8/15) 0.40a

Age (years) 67.63� 9.02 71.04� 8.13 72.09� 9.32 0.16b

Education (years) 11.73� 5.34 10.56� 5.12 9.70� 4.70 0.35b

MMSE 28.23� 3.07 23.48� 4.81 15.52� 5.74 <0.01b

MoCA 25.53� 3.81 18.92� 5.39 10.65� 5.23 <0.01b

AVLT_I 9.73� 2.26 6� 2.53 3.52� 2.04 <0.01b

AVLT_D 11.53� 2.36 3.70� 3.27 1.36� 1.97 <0.01b

AVLT_R 13.07� 1.72 7.61� 3.33 4.36� 2.97 <0.01b

Note: Data are presented as the range of minimum–maximum (mean� SD).
aThe p value was obtained using a two-tailed Pearson chi-squared test.
bThe p value was obtained using one-way analysis of variance tests.
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maps showed similar spatial patterns across the HCs, aMCI, and
AD groups.

3.3 Disrupted Regional FC Dynamics in aMCI
and AD

We used the NBS method to identify the disrupted connected
components in patients (Fig. 3). Under the cluster defining
threshold of p < 0.05, networks with 307 and 548 connections
were revealed to experience significant changes in dynamic
FC variability in the aMCI and AD groups, respectively. Using
a more rigorous threshold of p < 0.005, the networks were
reduced to 34 and 178 significant connections for aMCI and
AD, respectively.

For the aMCI group, the significantly changed connections
(using the threshold of p < 0.005) tended to be relatively long
distance and were concentrated in regions including the prefron-
tal and parietal cortexes [Fig. 3(a)]. We further considered the
roles of these regional structures in the context of the functional
network organization derived from the HC group. We found that
the targeted connections in the aMCI group belong mainly to
the default mode network, and the internetwork connections
were mainly between the default mode network and the frontal–
parietal network. For the AD group, a single connected network
consisting of 178 edges linking widely distributed brain regions
was altered [Fig. 3(b)]. The involved connections also belonged
mainly to long connections and were concentrated in regions
including the prefrontal, parietal, and visual cortexes. We further

Fig. 3 The brain regions with significantly increased Q values in patients with (a) aMCI and (b) AD. The
significant connections were categorized into four connectivity subgroups, i.e., homotopic, intrahemi-
spheric long and short, and heterotopic connections. The fNIRS measurement channels with different
colors showed different regions of functional networks. (c) The relationship between FC variability Q and
MMSE scores in the significant intrahemispheric long connections located in (a). (d) The relationship
between FC variability Q and MMSE scores in the significant intrahemispheric long connections located
in panel (b).
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found that the targeted connections in the AD group belong
mainly to the within default mode network, the frontal–parietal
network, and the internetwork connections that linked the
functional regions in the somatosensory, visual, and frontal–
parietal networks. Notably, all the significant connections found
in the aMCI group were also found in the AD group at net-
work level.

All of the connections exhibited increased dynamic FC
variability in the patients compared with the controls. No sig-
nificant differences were found with respect to connected com-
ponents between the patient groups of aMCI and AD patients.
For the static FC, no significant differences were found between
the patients (i.e., aMCI or AD) and HCs. For dynamic FC, the
Q were significantly negatively related to the MMSE scores in
the intrahemispheric long connections [Figs. 3(c) and 3(d)], irre-
spective of the long connections from aMCI [Fig. 3(a)] or AD
[Fig. 3(b)]. More severely, impaired patients tended to have
increased Q in the long intrahemispheric connections that were
abnormal in patients.

3.4 Sensitivity and Specificity of Dynamic FC
Variability in Differentiating Patients from HCs

Figure 4 showed the sensitivity and specificity of the index Q
in differentiating patients from HCs. The measurement was
the mean Q across significant connections between aMCI and
HCs [Figs. 4(a) and 4(c)] and between AD and HCs [Figs. 4(b)
and 4(d)], respectively. Overall, the classification exhibited a
satisfactory power in differentiating patients from HCs, no mat-
ter which measurement was used. Specifically, to differentiate
aMCI patients from HCs, the classification performance was
better as using the measurement from aMCI group [Fig. 4(a):
sensitivity ¼ 84%, specificity ¼ 70%, andAUC ¼ 82.5%] than
that from AD group [Fig. 4(b): sensitivity ¼ 84%, specificity ¼
50%, and AUC ¼ 71.2%]. Likewise, to differentiate AD pa-
tients from HCs, the classification performance was better as
using the measurement from AD group [Fig. 4(d): sensitivity ¼
82.6%, specificity ¼ 76.7%, and AUC ¼ 86.4%] than that from
aMCI group [Fig. 4(c): sensitivity ¼ 60.9%, specificity ¼ 90%,
and AUC ¼ 78.8%]. These results demonstrate that the index

Fig. 4 The patients-controls classification. (a) and (b) The ROC curves of average Q for aMCI and HCs,
in which the averageQ was calculated from the significant connections between aMCI and HCs (a), and
between AD and HCs (b), respectively. (c) and (d) The ROC curves of average Q for AD and HCs, in
which the averageQ was calculated from those significant connections between aMCI and HCs (a), and
between AD and HCs (d), respectively.
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Q could be used as a biomarker for the diagnosis of patients with
aMCI and AD.

3.5 FC States across Patients and HCs

Figure 5 shows the plot of cluster number versus ratio of
between-cluster and within-cluster distance. Ten FC states were
observed across multiple participants. We extracted four FC
states that dynamically reoccurred over time and across partic-
ipants in both patients and HCs [Fig. 6(a)]. The participants
expressed an average of 2.13 (SD, 0.97), 2.08 (SD, 0.86), and
2.26 (SD, 0.69) states for HCs, aMCI, and AD, respectively.
The number of states expressed had no significant difference
between participant groups.

Of the four FC states that were observable across participant
groups, state 1 accounts for ∼61% of all windows, followed by
state 2 for ∼23%, state 3 for 13%, and state 4 for 3% of all
windows. The FC pattern in state 1 closely resembled the static
FC [Fig. 6(b), correlation coefficient r ¼ 0.96], with strong

positive correlations along the diagonal (i.e., within functional
networks) [Fig. 6(a)], consistent with previous dynamic find-
ings,46 which represented a steady FC. For state 2, we found
that the FC in the default mode network, frontal–parietal
network, and visual network was increased, although it was
decreased in the attention and somatosensory networks com-
pared to state 1. The patterns in both the whole-brain FC and
the within subnetwork connectivity for state 2 were very similar
to those in state 1, but the variance of FC patterns within state 2
(which was quantified as the standard deviation across all FC
patterns within each state) was larger than that within state 1
[Fig. 6(c)]. For states 3 and 4, the FC patterns were less observed
and also differed markedly from these patterns of states 1 and 2.
Notably, the patterns showed quite uniform connectivity between
different measurement channels, which might reflect signals
from global and noncortical components. As such, the states
3 and 4 are not analyzed or discussed in the following sections.

3.6 Group Differences in Occurrence Frequency (F)
of FC States

Analysis of group differences in F values exhibited significant
group effects (all p < 0.05) for state 1 [Fð2;72Þ ¼ 3.581, p ¼
0.033] and state 2 [Fð2;72Þ ¼ 8.532, p < 0.001], respectively.
Posthoc comparisons revealed significantly reduced F values
in state 1 and significantly increased F values in state 2 for
AD patients relative to both the controls and the aMCI patients
(all p < 0.05) (Fig. 7). However, no differences were found in
the F values between the aMCI and controls (all p > 0.05) for
these two states.

3.7 Relationship between State Occurrence
Frequency (F ) and Behavioral Performance

The occurrence frequencies F for state 1 and state 2 showed
different linear relationships with the clinical variables of the
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Fig. 5 The plot of cluster number versus ratio of between-cluster and
within-cluster distance.

Fig. 6 (a) These four FC states were characterized over all the subjects. (b) The FC pattern in state 1
closely resembled the static FC with a correlation coefficient of r ¼ 0.96. (c) FC variance (standard
deviation) within FC state 1 and state 2.
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patients (Fig. 8). For state 1, the index F showed a significant
positive correlation with the MMSE (r ¼ 0.40, p ¼ 0.0062) as
well as the AVLT_recognition (r ¼ 0.37, p ¼ 0.015) [Fig. 8(a)].
For state 2, the index F showed a significant negative correlation
with the MMSE (r ¼ 0.39, p ¼ 0.0087), MoCA (r ¼ 0.3,
p ¼ 0.05), AVLT_delayed recall (r ¼ 0.35, p ¼ 0.025), and
the AVLT_recognition (r ¼ 0.31, p ¼ 0.046) [Fig. 8(b)],
respectively.

4 Discussion
We applied high sampling rate fNIRS imaging data to investi-
gate brain connectivity dynamics in patients with aMCI and AD.
We found that, compared to HCs, the patient groups showed
increased dynamic FC (Q) and abnormal occurrence frequency
(F) in specific brain connectivity states. These findings demon-
strate that dynamic brain FC networks were disrupted in patients
with aMCI and AD, which provides an important complement
to traditional time-averaged FC studies in aMCI/AD patients,
which solely characterize disconnection syndrome on the brain
connectivity strength.

The human brain is a complex network with time-varying FC
and network organization. A large number of neuroimaging
studies have revealed the dynamic characteristics of functional
cerebral network in human brain.12,19,47,48 In this study, our
results, for the first time assessed time-varying brain FC alter-
nation in aMCI and AD patients. We showed that dynamic brain
FC was significantly increased in the patient groups (Figs. 2
and 3). More importantly, our results revealed that the influence
of aMCI/AD was preferentially on long-distance connections,
e.g., involving in the regions of the default mode network
and frontal–parietal network. The default mode network and
frontal–parietal network were considered to be susceptible and
vulnerable regions to AD pathology.49–52 As such, the abnormal
fluctuation of dynamic brain FC in these regions could reflect
dysregulation of network function in facilitating information
integration across large-scale brain networks in the patients
with aMCI/AD. Our findings are also consistent with previous
neuroimaging studies from static brain connectivity analysis in
AD.53–57 These combined results demonstrate that both brain
connectivity strength and brain connectivity fluctuation were
disrupted in AD patients, which consistently impacts efficient
information integration between different functionally segre-
gated brain regions.

Furthermore, our results also showed that, using a ROC
analysis and the significant measurement separately from aMCI
or AD, the mean measurement values (i.e., the mean Q) can
differentiate aMCI [Fig. 4(a)] or AD [Fig. 4(d)] patients from
HCs with high sensitivity and specificity (Fig. 4), suggesting
that the measurement of index Q could be a potential marker
for diagnosing aMCI or AD patients. By contrast, the static
FC did not show significant changes between patients and HCs.
These comparisons demonstrate that the metric Q of dynamic
FC could be much more sensitive compared to static FC in
differentiating aMCI or AD patients from HCs. Such a reliable
marker will have tremendous value as a tool for early detection
of AD-related brain disease.

Fig. 8 The correlations between the occurrence frequency F and clinical variables. (a) Plots showing the
significant increases of the F in state 1 with MMSE and AVLT_R scores. (b) Plots showing the significant
decreases of the F in state 2 with MMSE, MoCA, AVLT_D, and AVLT_R.

Fig. 7 Group differences of occurrence frequency F in FC states 1
and 2 among HCs, aMCI, and AD.

Neurophotonics 025010-9 Apr–Jun 2019 • Vol. 6(2)

Niu et al.: Abnormal dynamic functional connectivity and brain states in Alzheimer’s diseases. . .



The FC states are considered to be some short-term connec-
tivity patterns; they are highly replicable and, in part, diverge
strongly from stationary connectivity patterns. We identified
aberrant brain FC states in aMCI/AD patients. Specifically, the
emergency frequency (F) in specific brain FC states significantly
changed between patient groups and HCs. For example, AD
patients exhibited a significantly decreased F in the first-level
connectivity states (i.e., FC state 1). The FC state 1 represented
the stationary connectivity-like pattern and emerged most fre-
quently in dynamic brain activity.58,59 The state 1 accounted for
∼70% in the dynamic connectivity and the other connectivity
states account for much less frequency (ranging between 7% and
15%). The decrease in F of FC state 1 in AD patients suggested
that an important and stable connectivity pattern was disrupted in
AD patients during spontaneous neural activity.

Furthermore, we also found that the F in the second-level
connectivity states (i.e., FC state 2) was significantly increased
in AD patients. The FC state 2 primarily characterized the
connections in default mode network and frontal–parietal and
visual networks, and it showed a less frequent emergency during
dynamic brain activity in healthy individuals [Fig. 4(c)].
However, for AD patients, the increase of the F in FC state 2
demonstrated much larger brain connectivity instability in the
patient groups. Similar to our findings, Damaraju et al.60 also
point out that specific connectivity states were altered in schizo-
phrenic patients. As such, we speculate that the abnormal
change in brain FC states could lead to disrupted functional inte-
gration throughout the brain in AD patients, which may further
account for cognitive deficits in these patients.

It is also noted that the altered F in brain FC states correlated
specifically with abnormal cognitive performance in patients.
For example, the F in FC states 1 and 2 significantly correlated
with the typical cognitive scores, e.g., MMSE and the AVLT_
recognition, respectively [Figs. 8(a) and 8(b)]. These findings
demonstrated that the disruption of occurrence frequency in spe-
cific connectivity states seriously correlated with the alternation
of brain cognition performance in AD patients. It also suggested
that the aberrant FC state is likely to underlie the decline in cog-
nitive and memory functions. Overall, our study demonstrated
that both brain connectivity fluctuation and brain connectivity
states were disrupted in AD patients, which extends the current
understanding about human brain connectome in this disease,
and shows the importance of evaluating dynamic changes of
brain connectivity in AD.

Several issues need to be further addressed. First, we adopted
resting-state fNIRS imaging data to characterize dynamic FC in
AD/aMCI. One of the most important advantages to use fNIRS
for dynamic FC analysis is the capability of long-term data col-
lection. However, in this study, we collected only 10-min data
length on each participant. Future study will exploit longer
fNIRS scan duration (e.g., several hours) to improve estimates
of FC variability by allowing patterns of connectivity to reoccur
several more times. Second, the present study was cross-
sectional, in which individual variations existed and may impact
the current main findings. Considering the convenience of using
fNIRS to conduct repeatable data collection, future studies with
longitudinal fNIRS imaging are required to further validate the
findings observed in this study. Third, a potential drawback61 of
using fNIRS imaging to assess functional network organization
in AD or aMCI patients is that, unlike fMRI, fNIRS imaging is
limited to the superficial cerebral cortex (i.e., ∼1 − 2 cm into the
brain) and cannot access deep cortical structures (e.g., the insula

or operculum) or subcortical brain structures (e.g., the striatum
or thalamus). Fortunately, a number of abnormal brain regions
are relatively near the cortical surface, including large portions
of the anterior and posterior regions of the default mode net-
work cortex, which are frequently highlighted in fMRI studies.
Finally, it is important to note that significant differences in FC
state features between aMCI and HCs were not found in our
study. This result could be because aMCI is a transitional and
long period in the progression of AD and that different individ-
uals at different stages are probably too heterogeneous to present
uniform FC state patterns. On the other hand, the results could
be affected by the small sample size. As such, it would be impor-
tant to recruit more participants to validate our current conclu-
sions in the future.

5 Conclusion
The present study provided a methodological framework for
applying dynamic FC analysis to AD/aMCI patients. The results
revealed that both brain connectivity fluctuation and brain con-
nectivity states were disrupted in AD patients, which extends the
current understanding about human brain connectome in this
disease and provides insights into understanding the pathophy-
siological mechanisms occurring in aMCI and AD.
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